Ejercicios Propuestos

Ejercicios Propuestos – Producto de una matriz por un escalar

Anuncios

Proceda paso a paso, explicando detalladamente cada paso con sus propias palabras.

Calcule el producto de la matriz por el escalar indicado.

1.  6 \cdot \left( {\begin{array}{rr} 10 & -7 \\ \end{array} } \right)

2.  9 \cdot \left( {\begin{array}{rr} 1 & -5 \\ \end{array} } \right)

3.  9 \cdot \left( {\begin{array}{r} -1 \\ -3 \\ \end{array} } \right)

4.  2 \cdot \left( {\begin{array}{r} -6 \\ 4 \\ \end{array} } \right)

5.  -6 \cdot \left( {\begin{array}{rrr} 9 & -7 & -8 \\ \end{array} } \right)

6.  -1 \cdot \left( {\begin{array}{rrr} -8 & -1 & 1 \\ \end{array} } \right)

7.  -4 \cdot \left( {\begin{array}{r} -7 \\ -7 \\ 7 \\ \end{array} } \right)

8.  -4 \cdot \left( {\begin{array}{r} 7 \\ -7 \\ 7 \\ \end{array} } \right)

9.  7 \cdot \left( {\begin{array}{rr} -3 & -8 \\ -3 & 9 \\ \end{array} } \right)

10.  9 \cdot \left( {\begin{array}{rr} -7 & -2 \\ 7 & 10 \\ \end{array} } \right)

11.  7 \cdot \left( {\begin{array}{rr} -2 & -5 \\ 10 & -1 \\ 7 & -7 \\ \end{array} } \right)

12.  -5 \cdot \left( {\begin{array}{rr} -2 & 5 \\ -5 & -10 \\ 6 & -5 \\ \end{array} } \right)

13.  2 \cdot \left( {\begin{array}{rrr} -5 & -10 & -3 \\ 1 & -5 & 7 \\ \end{array} } \right)

14.  10 \cdot \left( {\begin{array}{rrr} 4 & -10 & -1 \\ 5 & -4 & -5 \\ \end{array} } \right)

15.  10 \cdot \left( {\begin{array}{rrr} -10 & 6 & -2 \\ 10 & -8 & 3 \\ -10 & 2 & 5 \\ \end{array} } \right)

16.  -4 \cdot \left( {\begin{array}{rrr} -10 & 7 & 2 \\ 7 & -7 & -1 \\ -3 & -7 & 8 \\ \end{array} } \right)

Anuncios
Ejercicios Propuestos

Ejercicios Propuestos – Producto de Matrices

Anuncios

Proceda paso a paso, explicando detalladamente cada paso con sus propias palabras.

Calcule el producto entre matrices indicado y su conmutación, ¿los resultados son iguales? En caso de no poder efectuar el producto, indique porqué.

1.  \left( {\begin{array}{r} 5 \\ 5 \\ -5 \\ \end{array} } \right) \times \left( {\begin{array}{rr} 6 & -1 \\ -6 & -3 \\ 2 & 3 \\ \end{array} } \right)

2.  \left( {\begin{array}{rrr} -1 & 5 & -6 \\ 4 & -8 & 9 \\ -7 & -1 & 7 \\ \end{array} } \right) \times \left( {\begin{array}{rr} -4 & 8 \\ 10 & -5 \\ -10 & 7 \\ \end{array} } \right)

3.  \left( {\begin{array}{r} -3 \\ -3 \\ \end{array} } \right) \times \left( {\begin{array}{rrr} -1 & 5 & 3 \\ \end{array} } \right)

4.  \left( {\begin{array}{rrr} 9 & -10 & -4 \\ \end{array} } \right) \times \left( {\begin{array}{r} -8 \\ 7 \\ -3 \\ \end{array} } \right)

5.  \left( {\begin{array}{rr} -9 & -7 \\ -6 & 1 \\ \end{array} } \right) \times \left( {\begin{array}{rr} -4 & -10 \\ -7 & 9 \\ \end{array} } \right)

6.  \left( {\begin{array}{r} 3 \\ -6 \\ \end{array} } \right) \times \left( {\begin{array}{rr} -10 & -5 \\ 10 & -4 \\ \end{array} } \right)

7.  \left( {\begin{array}{r} -2 \\ 3 \\ -3 \\ \end{array} } \right) \times \left( {\begin{array}{r} 9 \\ -6 \\ 7 \\ \end{array} } \right)

8.  \left( {\begin{array}{rrr} 5 & -10 & -3 \\ 10 & -4 & -2 \\ \end{array} } \right) \times \left( {\begin{array}{r} -7 \\ 10 \\ \end{array} } \right)

9.  \left( {\begin{array}{rr} 9 & -8 \\ \end{array} } \right) \times \left( {\begin{array}{rr} -8 & -7 \\ \end{array} } \right)

10.  \left( {\begin{array}{rrr} 8 & 7 & 8 \\ -4 & -8 & 3 \\ \end{array} } \right) \times \left( {\begin{array}{rr} -2 & -7 \\ -7 & -2 \\ -8 & 10 \\ \end{array} } \right)

11.  \left( {\begin{array}{rr} -9 & 1 \\ \end{array} } \right) \times \left( {\begin{array}{rrr} 3 & -4 & 3 \\ -7 & 2 & -2 \\ 6 & -8 & 2 \\ \end{array} } \right)

12.  \left( {\begin{array}{rrr} -1 & -8 & 9 \\ \end{array} } \right) \times \left( {\begin{array}{rrr} -6 & 2 & 8 \\ \end{array} } \right)

13.  \left( {\begin{array}{rr} 1 & -9 \\ -10 & -8 \\ -1 & 8 \\ \end{array} } \right) \times \left( {\begin{array}{rrr} 1 & -9 & 10 \\ -9 & -6 & 4 \\ \end{array} } \right)

14.  \left( {\begin{array}{rrr} -4 & -9 & 10 \\ 9 & 2 & -9 \\ \end{array} } \right) \times \left( {\begin{array}{rr} 4 & -3 \\ 8 & -5 \\ \end{array} } \right)

15.  \left( {\begin{array}{rrr} 7 & 3 & -6 \\ -3 & 5 & -2 \\ 7 & -1 & -8 \\ \end{array} } \right) \times \left( {\begin{array}{r} 4 \\ 2 \\ -10 \\ \end{array} } \right)

16.  \left( {\begin{array}{rrr} -5 & -2 & 7 \\ 5 & -3 & 2 \\ -4 & -7 & 4 \\ \end{array} } \right) \times \left( {\begin{array}{r} 8 \\ -5 \\ \end{array} } \right)

17.  \left( {\begin{array}{rr} 3 & -7 \\ 7 & -3 \\ 7 & 1 \\ \end{array} } \right) \times \left( {\begin{array}{r} -6 \\ -6 \\ \end{array} } \right)

18.  \left( {\begin{array}{rr} 4 & 1 \\ 1 & -10 \\ -3 & 8 \\ \end{array} } \right) \times \left( {\begin{array}{rrr} 5 & -3 & -2 \\ 2 & -3 & -5 \\ 3 & -3 & 1 \\ \end{array} } \right)

19.  \left( {\begin{array}{r} -9 \\ 4 \\ 4 \\ \end{array} } \right) \times \left( {\begin{array}{r} 8 \\ -5 \\ -1 \\ \end{array} } \right)

20.  \left( {\begin{array}{rrr} 7 & 10 & -9 \\ 1 & 5 & 6 \\ -4 & -2 & 8 \\ \end{array} } \right) \times \left( {\begin{array}{rrr} 6 & 8 & -9 \\ \end{array} } \right)

21.  \left( {\begin{array}{rr} -6 & -1 \\ -10 & -8 \\ \end{array} } \right) \times \left( {\begin{array}{rrr} -6 & 1 & 6 \\ -1 & -7 & 5 \\ -6 & -6 & -9 \\ \end{array} } \right)

22.  \left( {\begin{array}{rr} -2 & 5 \\ -3 & 10 \\ -8 & 3 \\ \end{array} } \right) \times \left( {\begin{array}{rrr} 3 & 3 & -8 \\ 9 & -9 & 6 \\ \end{array} } \right)

23.  \left( {\begin{array}{r} 8 \\ -7 \\ \end{array} } \right) \times \left( {\begin{array}{rrr} -1 & -5 & -9 \\ 9 & 10 & 7 \\ \end{array} } \right)

24.  \left( {\begin{array}{rrr} -10 & 10 & 6 \\ \end{array} } \right) \times \left( {\begin{array}{rr} 7 & 3 \\ 3 & 10 \\ -2 & -5 \\ \end{array} } \right)

25.  \left( {\begin{array}{rrr} 9 & 1 & -4 \\ 2 & -5 & -9 \\ 7 & 8 & -3 \\ \end{array} } \right) \times \left( {\begin{array}{rr} -8 & 7 \\ -3 & -1 \\ \end{array} } \right)

26.  \left( {\begin{array}{r} 1 \\ -1 \\ \end{array} } \right) \times \left( {\begin{array}{rrr} 6 & -8 & -4 \\ \end{array} } \right)

27.  \left( {\begin{array}{rrr} -9 & -2 & -10 \\ -3 & -1 & -5 \\ -8 & 5 & 9 \\ \end{array} } \right) \times \left( {\begin{array}{rrr} -9 & 3 & -7 \\ \end{array} } \right)

28.  \left( {\begin{array}{rrr} 7 & -7 & 3 \\ \end{array} } \right) \times \left( {\begin{array}{rrr} 5 & -4 & 5 \\ \end{array} } \right)

29.  \left( {\begin{array}{rr} 3 & 10 \\ \end{array} } \right) \times \left( {\begin{array}{rrr} 8 & 5 & 7 \\ -1 & -4 & -2 \\ -3 & -5 & 4 \\ \end{array} } \right)

30.  \left( {\begin{array}{rr} 6 & -8 \\ -2 & -7 \\ -10 & 8 \\ \end{array} } \right) \times \left( {\begin{array}{rrr} 8 & -5 & 5 \\ \end{array} } \right)

31.  \left( {\begin{array}{rr} 4 & 7 \\ \end{array} } \right) \times \left( {\begin{array}{rrr} -2 & 7 & -6 \\ 9 & 7 & -7 \\ \end{array} } \right)

32.  \left( {\begin{array}{r} -1 \\ -2 \\ \end{array} } \right) \times \left( {\begin{array}{rrr} -6 & -3 & 8 \\ \end{array} } \right)

Anuncios
Ejercicios Propuestos

Ejercicios Propuestos – Resta de Matrices

Anuncios

Proceda paso a paso, explicando detalladamente cada paso con sus propias palabras.

1.  \left( {\begin{array}{rr} -3 & 10 \\ \end{array} } \right) - \left( {\begin{array}{rr} -5 & 4 \\ \end{array} } \right)

2.  \left( {\begin{array}{rr} -1 & -10 \\ \end{array} } \right) - \left( {\begin{array}{rr} -2 & -9 \\ \end{array} } \right)

3.  \left( {\begin{array}{rr} 3 & -9 \\ \end{array} } \right) - \left( {\begin{array}{rr} 10 & -9 \\ \end{array} } \right)

4.  \left( {\begin{array}{rr} -4 & 7 \\ \end{array} } \right) - \left( {\begin{array}{rr} 4 & 10 \\ \end{array} } \right)

5.  \left( {\begin{array}{r} 1 \\ -5 \\ \end{array} } \right) - \left( {\begin{array}{r} 9 \\ 5 \\ \end{array} } \right)

6.  \left( {\begin{array}{r} -5 \\ -4 \\ \end{array} } \right) - \left( {\begin{array}{r} 2 \\ -3 \\ \end{array} } \right)

7.  \left( {\begin{array}{r} 2 \\ -8 \\ \end{array} } \right) - \left( {\begin{array}{r} -7 \\ 1 \\ \end{array} } \right)

8.  \left( {\begin{array}{r} -4 \\ 5 \\ \end{array} } \right) - \left( {\begin{array}{r} 1 \\ 5 \\ \end{array} } \right)

9.  \left( {\begin{array}{rrr} -2 & -10 & -2 \\ \end{array} } \right) - \left( {\begin{array}{rrr} -5 & -3 & -10 \\ \end{array} } \right)

10.  \left( {\begin{array}{rrr} -5 & 1 & 8 \\ \end{array} } \right) - \left( {\begin{array}{rrr} 6 & -10 & -8 \\ \end{array} } \right)

11.  \left( {\begin{array}{rrr} 6 & 5 & -7 \\ \end{array} } \right) - \left( {\begin{array}{rrr} 4 & -3 & -2 \\ \end{array} } \right)

12.  \left( {\begin{array}{rrr} -5 & -4 & -7 \\ \end{array} } \right) - \left( {\begin{array}{rrr} 2 & 2 & -3 \\ \end{array} } \right)

13.  \left( {\begin{array}{r} -2 \\ 1 \\ 2 \\ \end{array} } \right) - \left( {\begin{array}{r} 8 \\ -6 \\ 4 \\ \end{array} } \right)

14.  \left( {\begin{array}{r} -5 \\ 2 \\ -1 \\ \end{array} } \right) - \left( {\begin{array}{r} 8 \\ 8 \\ 4 \\ \end{array} } \right)

15.  \left( {\begin{array}{r} 3 \\ 2 \\ 6 \\ \end{array} } \right) - \left( {\begin{array}{r} 5 \\ 2 \\ 9 \\ \end{array} } \right)

16.  \left( {\begin{array}{r} -10 \\ 4 \\ -5 \\ \end{array} } \right) - \left( {\begin{array}{r} -2 \\ -8 \\ -4 \\ \end{array} } \right)

17.  \left( {\begin{array}{rr} -7 & 1 \\ -9 & -8 \\ \end{array} } \right) - \left( {\begin{array}{rr} -5 & 2 \\ 7 & 7 \\ \end{array} } \right)

18.  \left( {\begin{array}{rr} 9 & 3 \\ -5 & 2 \\ \end{array} } \right) - \left( {\begin{array}{rr} -7 & -2 \\ -3 & -9 \\ \end{array} } \right)

19.  \left( {\begin{array}{rr} 2 & 3 \\ 7 & -5 \\ \end{array} } \right) - \left( {\begin{array}{rr} 5 & 9 \\ -8 & -8 \\ \end{array} } \right)

20.  \left( {\begin{array}{rr} 8 & 8 \\ 5 & -9 \\ \end{array} } \right) - \left( {\begin{array}{rr} -6 & -5 \\ -10 & 2 \\ \end{array} } \right)

21.  \left( {\begin{array}{rr} -5 & 10 \\ 4 & 9 \\ -2 & -1 \\ \end{array} } \right) - \left( {\begin{array}{rr} -4 & 8 \\ -1 & -6 \\ 5 & -9 \\ \end{array} } \right)

22.  \left( {\begin{array}{rr} -3 & 8 \\ 2 & 5 \\ 2 & -7 \\ \end{array} } \right) - \left( {\begin{array}{rr} 1 & -3 \\ 10 & 8 \\ -9 & 5 \\ \end{array} } \right)

23.  \left( {\begin{array}{rr} -5 & 6 \\ -5 & -10 \\ -10 & -5 \\ \end{array} } \right) - \left( {\begin{array}{rr} 9 & 4 \\ 5 & 8 \\ -5 & 4 \\ \end{array} } \right)

24.  \left( {\begin{array}{rr} 7 & -10 \\ -9 & 7 \\ -9 & -7 \\ \end{array} } \right) - \left( {\begin{array}{rr} -4 & -3 \\ -10 & 7 \\ 10 & -1 \\ \end{array} } \right)

25.  \left( {\begin{array}{rrr} 5 & 10 & 4 \\ -7 & -4 & 10 \\ \end{array} } \right) - \left( {\begin{array}{rrr} -2 & -6 & -2 \\ -6 & 2 & -10 \\ \end{array} } \right)

26.  \left( {\begin{array}{rrr} 5 & -3 & -10 \\ -8 & -4 & 2 \\ \end{array} } \right) - \left( {\begin{array}{rrr} -9 & 10 & -5 \\ 8 & 7 & -8 \\ \end{array} } \right)

27.  \left( {\begin{array}{rrr} -9 & -1 & 1 \\ 7 & 7 & 9 \\ \end{array} } \right) - \left( {\begin{array}{rrr} 10 & -9 & -8 \\ -2 & 9 & 4 \\ \end{array} } \right)

28.  \left( {\begin{array}{rrr} -8 & 1 & 1 \\ -9 & 4 & -5 \\ \end{array} } \right) - \left( {\begin{array}{rrr} 8 & -6 & -1 \\ -5 & -5 & 8 \\ \end{array} } \right)

29.  \left( {\begin{array}{rrr} 3 & 6 & -6 \\ 5 & -8 & -6 \\ 10 & -9 & -6 \\ \end{array} } \right) - \left( {\begin{array}{rrr} 8 & -10 & -3 \\ 5 & -3 & -2 \\ 4 & -9 & -7 \\ \end{array} } \right)

30.  \left( {\begin{array}{rrr} -4 & 7 & 1 \\ -3 & 8 & -3 \\ 2 & -6 & -1 \\ \end{array} } \right) - \left( {\begin{array}{rrr} -6 & -8 & -10 \\ -6 & 4 & 8 \\ 5 & 8 & 9 \\ \end{array} } \right)

31.  \left( {\begin{array}{rrr} -10 & 9 & 3 \\ -8 & 6 & 9 \\ -10 & -4 & -1 \\ \end{array} } \right) - \left( {\begin{array}{rrr} 7 & 7 & 3 \\ -1 & -3 & -9 \\ -3 & -1 & 5 \\ \end{array} } \right)

32.  \left( {\begin{array}{rrr} 8 & 6 & -6 \\ 9 & 3 & -3 \\ 1 & -3 & -3 \\ \end{array} } \right) - \left( {\begin{array}{rrr} -7 & -1 & 10 \\ -7 & -8 & -6 \\ 3 & 1 & -3 \\ \end{array} } \right)

Anuncios
Ejercicios Propuestos

Ejercicios Propuestos – Suma de Matrices

Anuncios

Proceda paso a paso, explicando detalladamente cada paso con sus propias palabras.

Calcule la suma entre matrices indicada.

1.  \left( {\begin{array}{rr} -4 & -7 \\ \end{array} } \right) + \left( {\begin{array}{rr} 2 & -2 \\ \end{array} } \right)

2.  \left( {\begin{array}{rr} 7 & -3 \\ \end{array} } \right) + \left( {\begin{array}{rr} -4 & 2 \\ \end{array} } \right)

3.  \left( {\begin{array}{rr} -9 & 8 \\ \end{array} } \right) + \left( {\begin{array}{rr} -10 & -10 \\ \end{array} } \right)

4.  \left( {\begin{array}{rr} 10 & 7 \\ \end{array} } \right) + \left( {\begin{array}{rr} -3 & -4 \\ \end{array} } \right)

5.  \left( {\begin{array}{r} 4 \\ 6 \\ \end{array} } \right) + \left( {\begin{array}{r} 7 \\ 7 \\ \end{array} } \right)

6.  \left( {\begin{array}{r} -6 \\ -7 \\ \end{array} } \right) + \left( {\begin{array}{r} -1 \\ 5 \\ \end{array} } \right)

7.  \left( {\begin{array}{r} 1 \\ 10 \\ \end{array} } \right) + \left( {\begin{array}{r} 8 \\ -4 \\ \end{array} } \right)

8.  \left( {\begin{array}{r} -1 \\ 4 \\ \end{array} } \right) + \left( {\begin{array}{r} -3 \\ 8 \\ \end{array} } \right)

9.  \left( {\begin{array}{rrr} 3 & -4 & -8 \\ \end{array} } \right) + \left( {\begin{array}{rrr} -2 & 4 & 6 \\ \end{array} } \right)

10.  \left( {\begin{array}{rrr} -7 & 5 & 7 \\ \end{array} } \right) + \left( {\begin{array}{rrr} -3 & 5 & 1 \\ \end{array} } \right)

11.  \left( {\begin{array}{rrr} 10 & 4 & -9 \\ \end{array} } \right) + \left( {\begin{array}{rrr} 10 & -6 & 1 \\ \end{array} } \right)

12.  \left( {\begin{array}{rrr} 2 & 8 & -8 \\ \end{array} } \right) + \left( {\begin{array}{rrr} -4 & 3 & -10 \\ \end{array} } \right)

13.  \left( {\begin{array}{r} -8 \\ -8 \\ 9 \\ \end{array} } \right) + \left( {\begin{array}{r} 3 \\ 5 \\ -1 \\ \end{array} } \right)

14.  \left( {\begin{array}{r} 5 \\ -1 \\ -10 \\ \end{array} } \right) + \left( {\begin{array}{r} 9 \\ 10 \\ 6 \\ \end{array} } \right)

15.  \left( {\begin{array}{r} -6 \\ 8 \\ 2 \\ \end{array} } \right) + \left( {\begin{array}{r} 5 \\ 1 \\ 1 \\ \end{array} } \right)

16.  \left( {\begin{array}{r} 5 \\ 7 \\ -10 \\ \end{array} } \right) + \left( {\begin{array}{r} 5 \\ 10 \\ 3 \\ \end{array} } \right)

17.  \left( {\begin{array}{rr} 6 & 2 \\ -6 & -2 \\ \end{array} } \right) + \left( {\begin{array}{rr} 1 & 6 \\ 5 & 9 \\ \end{array} } \right)

18.  \left( {\begin{array}{rr} -6 & 1 \\ 6 & 6 \\ \end{array} } \right) + \left( {\begin{array}{rr} -4 & 4 \\ 4 & 2 \\ \end{array} } \right)

19.  \left( {\begin{array}{rr} 3 & -10 \\ 9 & 4 \\ \end{array} } \right) + \left( {\begin{array}{rr} -5 & 6 \\ -2 & -5 \\ \end{array} } \right)

20.  \left( {\begin{array}{rr} 10 & 3 \\ 5 & 2 \\ \end{array} } \right) + \left( {\begin{array}{rr} -1 & 8 \\ 9 & -1 \\ \end{array} } \right)

21.  \left( {\begin{array}{rr} 1 & -1 \\ 1 & -2 \\ -5 & -8 \\ \end{array} } \right) + \left( {\begin{array}{rr} 1 & -9 \\ -6 & -4 \\ 3 & 5 \\ \end{array} } \right)

22.  \left( {\begin{array}{rr} -8 & 3 \\ -3 & 9 \\ -7 & 9 \\ \end{array} } \right) + \left( {\begin{array}{rr} -7 & 1 \\ 7 & 3 \\ 9 & -5 \\ \end{array} } \right)

23.  \left( {\begin{array}{rr} 8 & -7 \\ 7 & 10 \\ 1 & -9 \\ \end{array} } \right) + \left( {\begin{array}{rr} 6 & 10 \\ 2 & 3 \\ -9 & -7 \\ \end{array} } \right)

24.  \left( {\begin{array}{rr} 8 & 7 \\ -6 & 4 \\ -5 & -8 \\ \end{array} } \right) + \left( {\begin{array}{rr} -9 & -3 \\ 9 & -6 \\ -5 & -3 \\ \end{array} } \right)

25.  \left( {\begin{array}{rrr} -6 & 9 & 8 \\ 7 & 8 & -6 \\ \end{array} } \right) + \left( {\begin{array}{rrr} 5 & -7 & -4 \\ 2 & -7 & -3 \\ \end{array} } \right)

26.  \left( {\begin{array}{rrr} -2 & -5 & -8 \\ -4 & 8 & -7 \\ \end{array} } \right) + \left( {\begin{array}{rrr} -2 & 9 & -8 \\ -8 & 5 & -4 \\ \end{array} } \right)

27.  \left( {\begin{array}{rrr} 9 & 8 & -5 \\ -4 & 5 & -8 \\ \end{array} } \right) + \left( {\begin{array}{rrr} -7 & -6 & 5 \\ -6 & 1 & 1 \\ \end{array} } \right)

28.  \left( {\begin{array}{rrr} 4 & -2 & 6 \\ -10 & -6 & 10 \\ \end{array} } \right) + \left( {\begin{array}{rrr} -6 & -3 & 7 \\ -4 & -7 & -1 \\ \end{array} } \right)

29.  \left( {\begin{array}{rrr} -3 & -10 & -9 \\ 6 & -8 & -8 \\ -9 & 9 & 7 \\ \end{array} } \right) + \left( {\begin{array}{rrr} -1 & 4 & 4 \\ -6 & 9 & -9 \\ -3 & 1 & 8 \\ \end{array} } \right)

30.  \left( {\begin{array}{rrr} 10 & -7 & 6 \\ 8 & -5 & 10 \\ 1 & 10 & 7 \\ \end{array} } \right) + \left( {\begin{array}{rrr} -4 & 5 & 4 \\ 2 & -4 & 10 \\ -10 & -6 & 1 \\ \end{array} } \right)

31.  \left( {\begin{array}{rrr} -5 & 6 & -2 \\ 1 & 4 & -2 \\ -9 & -7 & 6 \\ \end{array} } \right) + \left( {\begin{array}{rrr} 1 & 1 & 7 \\ -2 & -9 & -8 \\ -9 & -6 & -4 \\ \end{array} } \right)

32.  \left( {\begin{array}{rrr} 7 & 7 & -1 \\ 5 & -5 & 10 \\ 6 & -10 & -6 \\ \end{array} } \right) + \left( {\begin{array}{rrr} 1 & -9 & 2 \\ 6 & -2 & 7 \\ 4 & -10 & 9 \\ \end{array} } \right)

Anuncios
Ejercicios Propuestos

Ejercicios Propuestos – Curva de Lorenz y Coeficiente de Gini

Anuncios

Proceda paso a paso, explicando detalladamente cada paso con sus propias palabras.

Considerando la Curva de Lorenz dada, determine qué porcentaje de los ingresos le corresponde al porcentaje de la población indicada; posteriormente calcule el Coeficiente de Gini. Grafique la curva L y la función identidad, indicando el porcentaje calculado y cuales son las áreas A y B.

  1. L(x) = \frac{27}{52}x^{2}+\frac{25}{52}x. Porcentaje de la población: 29.68
  2. L(x) = \frac{19}{34}x^{2}+\frac{15}{34}x. Porcentaje de la población: 11.01
  3. L(x) = \frac{109}{136}x^{2}+\frac{27}{136}x. Porcentaje de la población: 27.2
  4. L(x) = \frac{61}{71}x^{2}+\frac{10}{71}x. Porcentaje de la población: 47.41
  1. L(x) = \frac{125}{136}x^{6}+\frac{11}{136}x^{2}. Porcentaje de la población: 40.19
  2. L(x) = \frac{93}{101}x^{9}+\frac{8}{101}x^{5}. Porcentaje de la población: 15.07
  3. L(x) = \frac{13}{24}x^{2}+\frac{11}{24}x^{6}. Porcentaje de la población: 84.94
  4. L(x) = \frac{33}{59}x^{2}+\frac{26}{59}x^{7}. Porcentaje de la población: 29.36
  1. L(x) = \frac{79}{140}x^{12}+\frac{61}{140}x^{10}. Porcentaje de la población: 35.37
  2. L(x) = \frac{99}{103}x^{9}+\frac{4}{103}x^{14}. Porcentaje de la población: 80.2
  3. L(x) = \frac{116}{119}x^{13}+\frac{3}{119}x^{8}. Porcentaje de la población: 67.82
  4. L(x) = \frac{82}{101}x^{13}+\frac{19}{101}x^{14}. Porcentaje de la población: 78.72
Anuncios