The Conjugate of a Sum

Next we will define an expression that is closely related to the difference of squares, because when we find the addition (or subtraction as the case may be) of two real numbers, we can define an expression that will allow us to write that subtraction as a difference of squares.

Formally, if a and b are two real numbers, the conjugate of the sum (a+b) is defined as (a-b). Similarly, the conjugate of the subtraction (a-b) is defined as (a+b). That is, the sign between the two is changed. The importance of the conjugate lies in the fact that the product of an addition by its conjugate is equal to a difference of squares, that is,

This equality can be deduced by performing the distributive property of the real numbers, let’s see then,

This type of expressions is often found in the development of algebraic operations and is used mainly to simplify operations, let’s see in the following examples how to identify the conjugation of some expressions:

Anuncios

Examples

Example 1

Identify the conjugate of 12 - 5. It does not have much sense to identify the conjugate of this expression because we can simply make the subtraction and obtain 7 as a result.

Example 2

Identify the conjugate of \sqrt{12} - 5. Note that one of the involved sums is the square root of twelve, so it cannot be subtracted with five, so we conclude that its conjugate is \sqrt{12} + 5.

Example 3

Identify the conjugate of 3 + \sqrt{8}. Note that one of the summands involved is the square root of eight, so it cannot be added with three, so we conclude that its conjugate is 3 - \sqrt{8}.

Example 4

Identify the conjugate of 3x - 7. Note that one of the sums involved is three multiplied by one unknown, so it cannot be subtracted with seven, then, we conclude that its conjugate is 3x + 7.

Example 5

Identify the conjugate of 15 + 4x. Let’s notice that one of the involved sums is four multiplied by one unknown, therefore it cannot be added with 15, then, we conclude that its conjugate is 15 - 4x.

Example 6

Identify the conjugate of 6 + \sqrt{x+2}. This subtraction cannot be done, so we conclude that your conjugate is 6 - \sqrt{x+2}. Noting that the sign inside the root does not change.


Ecuaciones Logarítmicas

Expresiones Logarítmicas

En ocasiones, encontramos ecuaciones exponenciales cuya solución no es una tarea trivial, así que debemos recurrir a métodos más sofisticados. Si a y b son números reales positivos, definimos una nueva expresión a partir de la siguiente equivalencia:

a^x = b \Leftrightarrow \log_a(b) = x

La expresión \log_a(b) se conoce como una expresión logarítmica y se lee como logaritmo base a de b. Esta provee una solución para la ecuación planteada.

De forma particular, si consideramos la ecuación exponencial 2^x = 4, entonces, podemos usar una expresión logarítmica para definirla de la siguiente manera

2^x = 4 \Leftrightarrow \log_2(4) = x

La importancia de las expresiones logarítmicas radica en que estas se usan principalmente para describir variaciones proporcionales, porcentuales o en el largo plazo sobre conjuntos de datos, es por esto que son ampliamente estudiadas. Veamos entonces cuales son sus propiedades.

Anuncios

Propiedades del Logaritmo

Propiedades sobre el argumento

A continuación se presentará una lista de algunas propiedades del logaritmo de un número, del producto y la división, que se deducen de las propiedades de la potencias. Sean a y b números reales positivos; m y n números reales, entonces

  • \log_a(1) = 0
  • \log_a(a) = 1
  • \log_a(a^2) = 2
  • \log_a(a^n) = n
  • \log_a(b \cdot c) = \log_a(b) + \log_a(c)
  • \log_a(b^n) = n \log_a(b)
  • \log_a(\frac{a}{b}) = \log_a(b) - \log_a(c)
  • \log_a(\frac{1}{b^n}) = -n\log_a(b)
  • \log_a(\sqrt[n]{b}) = \frac{1}{n}\log_a(b)
  • \log_a(\sqrt[n]{b^n}) = \frac{m}{n}\log_a(b)

Propiedades sobre la base

Las propiedades antes vistas, hacen referencia al argumento del logaritmo, es decir, a la expresión que se encuentra dentro de los paréntesis. Sin embargo, la propiedad que veremos a continuación hace referencia a la base de estos y se conocen como propiedades de cambio de base.

Si consideramos el logaritmo base a de b, \log_a(b) y consideramos un nuevo número real positivo c. Entonces, este logaritmo se puede reescribir de la siguiente manera

\log_a(b) = \dfrac{\log_c(b)}{\log_c(a)}

De esta forma, hemos reescrito el logaritmo que originalmente tenía base a como el cociente de dos logaritmos de base c.

Ecuaciones Logarítmicas

Si bien se pueden presentar casos en los que una incógnita se presenta en el argumento o en la base logaritmo en una ecuación, también hay que considerar los logaritmos serán de vital importancia al calcular la solución de ecuaciones exponenciales donde la base de los elementos involucrados no es la misma.

Veamos algunos ejemplos en los que empleamos las propiedades de los logaritmos para calcular la solución de ecuaciones que involucran expresiones logarítmicas.

Anuncios

Ejemplos

Ejemplo 1

Calcule la solución de la siguiente ecuación logarítmica:

\log_2 (32) = x

Si bien podemos calcular \log_2 (32) directamente con una calculadora, este tipo de ecuaciones sirve como ejercicio para familiarizase con las propiedades de las potencias y las propiedades de los logaritmos.

En este tipo de ecuaciones, es conveniente reescribir las expresiones involucradas para cancelar la base con el argumento, es por esto que descomponemos los números involucrados como productos de factores primos. Entonces,

\log_2 (2^5) = x

De esta forma, podemos aplicar la propiedad del logaritmo que nos permite sacar el exponente del argumento como un factor que multiplica el logaritmo, es decir,

5 \log_2 (2) = x

Notamos inmediatamente que logaritmo base dos de dos es igual a uno, es decir, \log_{2} \left( 2 \right). Por lo tanto, concluimos que

x = 5

Ejemplo 2

Calcule la solución de la siguiente ecuación logarítmica:

\log_{25} \left( \sqrt[4]{5} \right) = x

Si bien podemos calcular \log_{25} \left( \sqrt[4]{5} \right) directamente con una calculadora, este tipo de ecuaciones sirve como ejercicio para familiarizase con las propiedades de las potencias y las propiedades de los logaritmos.

En este tipo de ecuaciones, es conveniente reescribir las expresiones involucradas para cancelar la base con el argumento. Entonces, conviene reescribir \sqrt[4]{5} como 5^{\frac{1}{4}} y así,

\log_{25} \left( 5^{\frac{1}{4}} \right) = x

De esta forma, podemos aplicar la propiedad del logaritmo que nos permite sacar el exponente del argumento como un factor que multiplica el logaritmo, es decir,

\frac{1}{4} \log_{25} \left( 5 \right) = x

Notamos además, que 5 se puede reescribir como \sqrt{25} = 25^{\frac{1}{2}}, por lo tanto

\frac{1}{4} \log_{25} \left( 25^{\frac{1}{2}} \right) = x

sacamos nuevamente el exponente del argumento como un factor que multiplica el logaritmo,

\frac{1}{4} \cdot \frac{1}{2} \log_{25} \left( 25 \right) = x

Notamos inmediatamente que logaritmo base dos de dos es igual a uno, es decir, \log_{25} \left( 25 \right). Por lo tanto, concluimos que

x = \frac{1}{8}

Anuncios

Ejemplo 3

Calcule la solución de la siguiente ecuación logarítmica:

\log_{9} \left( \frac{1}{3} \right) = x

Si bien podemos calcular \log_{9} \left( \frac{1}{3} \right) directamente con una calculadora, este tipo de ecuaciones sirve como ejercicio para familiarizase con las propiedades de las potencias y las propiedades de los logaritmos.

En este tipo de ecuaciones, es conveniente reescribir las expresiones involucradas para cancelar la base con el argumento. Entonces, conviene reescribir 3 como \sqrt{9} y así,

\log_{9} \left( \frac{1}{3} \right) = x

\Rightarrow \ \log_{9} \left( \frac{1}{\sqrt{9}} \right) = x

\Rightarrow \ \log_{9} \left( \frac{1}{9^{\frac{1}{2}}} \right) = x

\Rightarrow \ \log_{9} \left( 9^{-\frac{1}{2}} \right) = x

De esta forma, podemos aplicar la propiedad del logaritmo que nos permite sacar el exponente del argumento como un factor que multiplica el logaritmo, es decir,

-\frac{1}{2} \log_{9} \left( 9 \right) = x

Notamos inmediatamente que logaritmo base dos de dos es igual a uno, es decir, \log_{9} \left( 9 \right). Por lo tanto, concluimos que

x = - \frac{1}{2}

Ejemplo 4

Calcule la solución de la siguiente ecuación logarítmica:

\log_{\sqrt{2}} \left( \frac{1}{4} \right) = x

Si bien podemos calcular \log_{\sqrt{2}} \left( \frac{1}{4} \right) directamente con una calculadora, este tipo de ecuaciones sirve como ejercicio para familiarizase con las propiedades de las potencias y las propiedades de los logaritmos.

En este tipo de ecuaciones, es conveniente reescribir las expresiones involucradas para cancelar la base con el argumento. Entonces, conviene reescribir \frac{1}{4} como (\sqrt{2})^{-4} y así,

\log_{\sqrt{2}} \left( \frac{1}{4} \right) = x

\Rightarrow \ \log_{\sqrt{2}} \left( \left( \sqrt{2} \right)^{-4} \right) = x

De esta forma, podemos aplicar la propiedad del logaritmo que nos permite sacar el exponente del argumento como un factor que multiplica el logaritmo, es decir,

-4 \log_{\sqrt{2}} \left( \sqrt{2} \right) = x

Notamos inmediatamente que logaritmo base dos de dos es igual a uno, es decir, \log_{\sqrt{2}} \left( \sqrt{2} \right). Por lo tanto, concluimos que

x = - 4


Veamos en lo siguientes ejemplos como aplicar las propiedades de los logaritmos para calcular la solución de algunas ecuaciones exponenciales.

Anuncios

Ejemplos

Ejemplo 5

Calcule la solución de la siguiente ecuación exponencial:

3^x = 2^5

Lo primero que debemos notar es que las bases de los elementos involucrados no son iguales, así que el procedimiento no es tan simple como igualar los exponentes.

Una de las técnicas para abordar este tipo de ecuaciones es aplicar el logaritmo con la base que más convenga en ambos lados de la ecuación. En este caso, aplicamos el logaritmo base tres pues esta es la base que involucra a la incógnita. Entonces,

\log_3 \left( 3^x \right) = \log_3 \left( 2^5 \right)

De esta forma, podemos aplicar la propiedad del logaritmo que nos permite sacar el exponente del argumento como un factor que multiplica el logaritmo, es decir,

x \log_3 \left( 3 \right) = 5 \log_3 \left( 2 \right)

Notamos inmediatamente que el logaritmo cuya base es la misma que el argumento igual a uno, es decir, \log_3 \left( 3 \right) = 1. Por lo tanto, concluimos que

x = 5 \log_3 \left( 2 \right)

Para calcular el valor de \log_3 \left( 2 \right) es necesario recurrir a una calculadora científica. Usualmente, las calculadoras científicas sólo permiten calcular el logaritmo base diez o el logaritmo neperiano (base \textit{\Large e}). Sin, embargo, usando la propiedad cambio de base, podemos calcular este logaritmo, pues

\log_3 \left( 2 \right) = \frac{\log_{10} (2)}{\log_{10} (3)} \approx 0.63092975 \ldots

Por lo tanto,

x \approx 3.1546 \ldots

Ejemplo 6

Calcule la solución de la siguiente ecuación exponencial:

5^x \cdot 7^2 = 3^4

Lo primero que debemos notar es que las bases de los elementos involucrados no son iguales, así que el procedimiento no es tan simple como igualar los exponentes.

Una de las técnicas para abordar este tipo de ecuaciones es aplicar el logaritmo con la base que más convenga en ambos lados de la ecuación. En este caso, aplicamos el logaritmo base cinco pues esta es la base que involucra a la incógnita. Entonces,

\log_5 \left(5^x \cdot 7^2 \right) = \log_5 \left( 3^4 \right)

Entonces, aplicamos la propiedad del logaritmo que nos permite separar el producto del argumento como una suma de logaritmos, es decir,

\log_5 \left( 5^x \right) + \log_5 \left( 7^2 \right) = \log_5 \left( 3^4 \right)

De esta forma, podemos aplicar la propiedad del logaritmo que nos permite sacar el exponente del argumento como un factor que multiplica el logaritmo, es decir,

x \log_5 \left( 5 \right) +2 \log_5 \left( 7 \right) = 4 \log_5 \left( 3 \right)

Notamos inmediatamente que el logaritmo cuya base es la misma que el argumento igual a uno, es decir, \log_5 \left( 5 \right) = 1. Por lo tanto,

x + 2 \log_5 \left( 7 \right) = 4 \log_5 \left( 3 \right)

Posteriormente, despejamos la incógnita x para concluir que

x = 4 \log_5 \left( 3 \right) - 2 \log_5 \left( 7 \right)

Para calcular el valor de 4 \log_5 \left( 3 \right) - 2 \log_5 \left( 7 \right) es necesario recurrir a una calculadora científica. Usualmente, las calculadoras científicas sólo permiten calcular el logaritmo base diez o el logaritmo neperiano (base \textit{\Large e}). Sin, embargo, usando la propiedad cambio de base, podemos calcular estos logaritmo, pues

\log_5 \left( 3 \right) = \frac{\log_{10} (3)}{\log_{10} (5)} \approx 0.6823 \ldots

\log_5 \left( 7 \right) = \frac{\log_{10} (7)}{\log_{10} (5)} \approx 1.2090 \ldots

Por lo tanto,

x \approx 0.3123 \ldots


Anuncios

Ecuaciones Exponenciales

Al estudiar las propiedades de las potencias, resulta de particular interés el caso en que fijamos la base y variamos el exponente, a las expresiones que definen este tipo de situaciones las llamamos expresiones exponenciales. Formalmente, si consideramos un valor desconocido x y una base a, entonces

a^{x}

Será una expresión exponencial de base a. De forma particular, si consideramos a=2 tendríamos una expresión exponencial de base dos expresada de la siguiente forma

2^{x}

Las expresiones exponenciales cumplirán con las mismas propiedades que se han definido para las potencias, pero el caso interesante resulta cuando establecemos igualdades que involucran expresiones exponenciales, pues si consideramos la siguiente ecuación

a^x = b

Diremos que esta es una ecuación exponencial y debemos desarrollar un método que nos permita calcular la solución de este tipo de ecuaciones. Particularmente, si consideramos la ecuación

2^x = 8

La solución salta a la vista, pues sabiendo que dos elevado al cubo es igual a ocho, entonces concluimos que el valor de x que satisface la igualdad es x=3. Sin embargo, la solución no siempre será tan clara, así que debemos recurrir a las propiedades de las potencias para poder encontrar la solución.

Veamos como aplicar las propiedades de las potencias para calcular la solución de algunas ecuaciones exponenciales.

Anuncios

Ejemplos

Ejemplo 1

Calcule la solución de la siguiente ecuación exponencial:

3^x = 81

Si bien, la solución de esta ecuación se puede deducir de forma inmediata, una de las técnicas para calcular este tipo de ecuaciones es descomponer los números involucrados como productos de factores primos. Entonces, descomponiendo 27, tenemos que

3^x = 3^4

De esta forma concluimos que si las bases son iguales, entonces, necesariamente los exponentes son iguales. Por lo tanto, tenemos que

x = 4

Ejemplo 2

Calcule la solución de la siguiente ecuación exponencial:

5^{x+1} = 125

Descomponemos los números involucrados como productos de factores primos. Entonces, descomponiendo 125, tenemos que

5^{x+1} = 5^3

De esta forma concluimos que si las bases son iguales, entonces, necesariamente los exponentes son iguales. Por lo tanto, tenemos que

x+1 = 3 \Rightarrow x = 3 -1 \Rightarrow x = 2

Anuncios

Ejemplo 3

Calcule la solución de la siguiente ecuación exponencial:

4 \cdot 2^x = 128

Descomponemos los números involucrados como productos de factores primos. Entonces, descomponiendo 128, tenemos que

2^2 \cdot 2^x = 2^7

Al multiplicar factores que tienen la misma base, sumamos los exponentes

2^{2+x} = 2^7

De esta forma concluimos que si las bases son iguales, entonces, necesariamente los exponentes son iguales. Por lo tanto, tenemos que

2+x = 7 \Rightarrow x = 7 - 2 \Rightarrow x = 5

Ejemplo 4

Calcule la solución de la siguiente ecuación exponencial:

49^x \cdot 7^5 = 343

Descomponemos los números involucrados como productos de factores primos. Entonces, descomponiendo 128, tenemos que

\left(7^2 \right)^x \cdot 7^5 = 7^3

Si tenemos una expresión elevada a un exponente, y a su vez, esta está elevada a otro exponente, multiplicamos los exponentes

7^{2x} \cdot 7^5 = 7^3

Al multiplicar factores que tienen la misma base, sumamos los exponentes

7^{2x+5} = 7^3

De esta forma concluimos que si las bases son iguales, entonces, necesariamente los exponentes son iguales. Por lo tanto, tenemos que

2x+5 = 3 \Rightarrow 2x = 3 - 5 \Rightarrow 2x = -2 \Rightarrow x = -\frac{2}{2} \Rightarrow x = -1

Anuncios

Ejemplo 5

Calcule la solución de la siguiente ecuación exponencial:

49^x \cdot 7^5 = 343

Descomponemos los números involucrados como productos de factores primos. Entonces, descomponiendo 128, tenemos que

\left(7^2 \right)^x \cdot 7^5 = 7^3

Si tenemos una expresión elevada a un exponente, y a su vez, esta está elevada a otro exponente, multiplicamos los exponentes

7^{2x} \cdot 7^5 = 7^3

Al multiplicar factores que tienen la misma base, sumamos los exponentes

7^{2x+5} = 7^3

De esta forma concluimos que si las bases son iguales, entonces, necesariamente los exponentes son iguales. Por lo tanto, tenemos que

2x+5 = 3 \Rightarrow 2x = 3 - 5 \Rightarrow 2x = -2 \Rightarrow x = -\frac{2}{2} \Rightarrow x = -1

Ejemplo 6

Calcule la solución de la siguiente ecuación exponencial:

81^x \cdot 9^4 = 27^x \cdot 3^2

Descomponemos los números involucrados como productos de factores primos. Entonces, descomponiendo 128, tenemos que

\left( 3^4 \right)^x \cdot \left( 3^2 \right)^4 = \left( 3^3 \right)^x \cdot 3^2

Si tenemos una expresión elevada a un exponente, y a su vez, esta está elevada a otro exponente, multiplicamos los exponentes

3^{4x} \cdot 3^{8} = 3^{3x} \cdot 3^2

Al multiplicar factores que tienen la misma base, sumamos los exponentes

3^{4x+8} = 3^{3x+2}

De esta forma concluimos que si las bases son iguales, entonces, necesariamente los exponentes son iguales. Por lo tanto, tenemos que

4x+8 = 3x+2 \Rightarrow 4x - 3x = 2 - 8 \Rightarrow x = -6

Anuncios

Ejemplo 7

Calcule la solución de la siguiente ecuación exponencial:

8^x \cdot \frac{1}{16} = \frac{1}{32^x} \cdot 4^5

Descomponemos los números involucrados como productos de factores primos. Entonces, descomponiendo $128$, tenemos que

\left( 2^3 \right)^x \cdot \frac{1}{2^4} = \frac{1}{\left( 2^5 \right)^x} \cdot \left( 2^2 \right)^5

Si tenemos una expresión elevada a un exponente, y a su vez, esta está elevada a otro exponente, multiplicamos los exponentes. Además, aquellos elementos que están el denominador los podemos reescribir como numeradores cambiando el signo del exponente

2^{3x} \cdot 2^{-4} = 2^{-5x} \cdot 2^{10}

Al multiplicar factores que tienen la misma base, sumamos los exponentes

2^{3x-4} = 2^{-5x+10}

De esta forma concluimos que si las bases son iguales, entonces, necesariamente los exponentes son iguales. Por lo tanto, tenemos que

3x-4 = -5x+10 \Rightarrow 3x + 5x = 10 + 4 \Rightarrow 8x = 14 \Rightarrow x = \frac{7}{4}


Calculadora Científica | totumat.com

Herramientas Básicas de una Calculadora Científica

En mis años de experiencia docente a nivel universitario, he notado que si bien, la mayoría de los estudiantes tienen acceso a una calculadora científica, el uso que se le da no es mayor del que se le puede dar a una «calculadora bodeguera», es decir, una de este tipo

MX-12B | Serie con valor agregado | HOGAR | Calculadoras | CASIO
  1. La Calculadora CASIO fx-82MS
  2. Fracciones y Decimales
  3. Potencias
  4. Radicales
  5. Logaritmos
    1. Calcular el logaritmo de cualquier base
  6. Exponenciales

La Calculadora CASIO fx-82MS

La calculadora más común encontrada en las aulas de clases, desde bachillerato hasta el nivel universitario, es la calculadora CASIO fx-82MS. Aunque es sencilla en comparación con otras calculadoras científicas, es muy versátil.

fx-82MS

Aparte de las operaciones de suma, resta, multiplicación y división. Veamos cuales son las operaciones básicas que se pueden efectuar con esta calculadora, pero además, veamos que con conocimientos matemáticos, varias de las opciones se pueden usar para hacer distintos tipos de operaciones.



Fracciones y Decimales

Las operaciones con fracciones o con decimales pueden resultar engorrosas para calcular a mano, afortunadamente, las calculadoras tienen una opción para reescribir fracciones como números decimales y viceversa. Para esto, se debe presionar el siguiente botón:

Este botón, reescribirá los números decimales como fracciones mixtas, particularmente para poder usar la opción correspondiente a las fracciones puras, se debe presionar la tecla SHITF previamente, pues con ella se pueden usar las opciones resaltadas en amarillo sobre cada tecla.

Potencias

El caso en el que más se usa una potencia en los cursos de matemáticas es cuando debemos elevar un número al cuadrado, seguido de esto, cuando debemos elevar un número al cubo. Para esto, existen dos botones dedicados.

Sin embargo, ¿qué haremos si queremos elevar un número a la 4? ¿O a la 10? ¿Y a la 7/5? Para esto, debemos usar el circunflejo… ¿El circunqué? El circunflejo es el signo (^) y de forma general, en el lenguaje matemático compucional, se usa para denotar una potencia.

Usando esta tecla, podemos calcular distintas potencias, de forma que

  • Si queremos calcular 6 elevado a la 4, entonces escribimos
    6^4.
  • Si queremos calcular 2 elevado a la 10, entonces escribimos
    2^10.
  • Si queremos calcular 4 elevado a la 7/5, entonces escribimos
    4^(7/5).

Nótese que en este último caso, se usaron paréntesis para escribir la potencia. Esto es para indicarle a la calculadora que primero debe hacer las operación que está dentro del paréntesis. El uso de los paréntesis para definir operaciones es necesario para no incurrir en errores de cálculo.

Radicales

El caso en el que más se usa un radical en los cursos de matemáticas es cuando debemos calcular la raíz cuadrada, seguido de esto, cuando debemos calcular la raíz cúbica. Para esto, existen dos botones dedicados.

Particularmente para poder usar la opción correspondiente a la raíz cúbica, se debe presionar la tecla SHITF previamente, pues con ella se pueden usar las opciones resaltadas en amarillo sobre cada tecla.

Sin embargo, ¿qué haremos si queremos calcular la raíz cuarta? ¿O a la raíz décima? ¿Y a la sétima de un número elevado a la 5? Para esto, debemos usar presionar SHIFT seguido de el circunflejo (^), pues con esto activamos la expresión \sqrt[x]{ \ }.

Usando esta tecla, podemos calcular distintas raíces, de forma que

  • Si queremos calcular la raíz cuarta de 6, entonces escribimos
    4\sqrt[x]{ \ }6.
  • Si queremos calcular la raíz décima de 2, entonces escribimos
    10\sqrt[x]{ \ }2.
  • Si queremos calcular la raíz quinta de 4 elevado a la 7, entonces escribimos
    5\sqrt[x]{ \ }(4^7).

Nótese que en este último caso, se usaron paréntesis para escribir la potencia. Esto es para indicarle a la calculadora que primero debe hacer las operación que está dentro del paréntesis. El uso de los paréntesis para definir operaciones es necesario para no incurrir en errores de cálculo.

También nos podemos fijar que la raíz quinta de 4 elevado a la 7 también se puede calcular usando 4^(7/5), esto se debe a que de acuerdo a las propiedades de las potencias y radicales, tenemos que

a^{\frac{m}{n}} = \sqrt[n]{a^m}



Logaritmos

Los logaritmos se usan con frecuencia para estudiar cambios proporcionales o porcentuales en conjuntos de datos. Usualmente se considera el logaritmo con base 10 o el logarimo con base \textit{\Large e}, este último conocido como el logaritmo neperiano o logaritmo natural. Para esto, existen dos botones dedicados.

Usando esta tecla, podemos calcular distintos logaritmos, de forma que

  • Si queremos el logaritmo base 10 de 6, entonces escribimos
    log6.
  • Si queremos el logaritmo base 10 de 2 elevado a la 5, entonces escribimos
    log(2^5).
  • Si queremos el logaritmo neperiano de 8, entonces escribimos
    ln8.
  • Si queremos el logaritmo neperiano de la raíz cúbica de 15, entonces escribimos
    ln(\sqrt[3]{ \ }15).

Nótese que en este último caso, se usaron paréntesis para escribir la potencia. Esto es para indicarle a la calculadora que primero debe hacer las operación que está dentro del paréntesis. El uso de los paréntesis para definir operaciones es necesario para no incurrir en errores de cálculo.

Calcular el logaritmo de cualquier base

Usualmente, las calculadoras científicas sólo permiten calcular el logaritmo base diez o el logaritmo neperiano. Sin embargo, debemos recordar la propiedad cambio de base, que indica que

$\log_a(b) = \dfrac{\log_c(b)}{\log_c(a)}$

Entonces, podemos calcular el logaritmo de cualquier base en la calculadora de la siguiente forma:

  • Si queremos el logaritmo base 3 de 2, entonces escribimos
    log2/log3.
  • Si queremos el logaritmo base 9 de 13, entonces escribimos
    log13/log9.
  • Si queremos el logaritmo base 12 de 33, entonces escribimos
    log(33)/log12.
  • Si queremos el logaritmo base 5 de 4+7, entonces escribimos
    log(4+7)/log5.

Exponenciales

Hay una potencia muy particular que debemos calcular con regularidad cuando se hacen desarrollos matemáticos y esta se presenta cuando operamos con la función exponencial. Usualmente se considera la base 10 o la base \textit{\Large e}. Para esto, existen dos botones dedicados.

Para poder usar estas opciones, se debe presionar la tecla SHITF previamente, pues con ella se pueden usar las opciones resaltadas en amarillo sobre cada tecla.

Usando esta tecla, podemos calcular distintas expresiones exponciales, de forma que

  • Si queremos 10 elevado a la 6, entonces escribimos
    10^x6.
  • Si queremos 10 elevado a la 2, entonces escribimos
    10^x2.
  • Si queremos 10 elevado a la 7/3, entonces escribimos
  • 10^x(7/3).
  • Si queremos \textit{\Large e} elevado a la 8, entonces escribimos
    \textit{\Large e}^x8.
  • Si queremos \textit{\Large e} elevado a la 15 + 5, entonces escribimos
    \textit{\Large e}^x(15+5).

Nótese que en este último caso, se usaron paréntesis para escribir la potencia. Esto es para indicarle a la calculadora que primero debe hacer las operación que está dentro del paréntesis. El uso de los paréntesis para definir operaciones es necesario para no incurrir en errores de cálculo.

Para definir directamente el número \textit{\Large e} tenemos dos opciones, podemos escribir \textit{\Large e}^x1 o podemos presionar el siguiente botón

Para poder usar estas opciones, se debe presionar la tecla ALPHA previamente, pues con ella se pueden usar las opciones resaltadas en rojo sobre cada tecla.

Usando esta tecla, podemos calcular distintas expresiones exponciales con base \textit{\Large e}, de forma que

  • Si queremos \textit{\Large e} elevado a la 3, entonces escribimos
    \textit{\Large e}^3.
  • Si queremos \textit{\Large e} elevado a la 1/2, entonces escribimos
    \textit{\Large e}^(1/2).


Guardar un número en la memoria de la calculadora

Al hacer recurrir varias veces un mismo cálculo, resulta engorroso tener que escribir la operación una y otra vez. Afortunadamente, las calculadoras cuentan una opción para guardar números o resultados de operaciones en una calculadora.

La opción STO denota la palabra en inglés storage, que se traduce como almacenamiento en español. La calculadora CASIO fx-82MS tiene seis espacios disponibles para almacenar en su memoria, estos son los correspondientes a A, B, C, D, E y F.

Almacenar un número en la memoria se efectúa en tres pasos sencillos. Supongamos que debe almacenar el número 3 en el espacio de memoria A. Entonces, debe presionar 3, seguido de STO (presionando previamente SHITF), seguido de la tecla correspondiente a A (sin presionar ALPHA):

Posteriormente, deberá aparecer en la pantalla lo siguiente:

3 \rightarrow A

De esta forma, si hacemos el llamado de A (presionando previamente ALPHA), este tendrá almacenado el valor 3. Entonces, si escribimos

7 + A

El resultado será igual a 10, pues es como sumar 7+3.

Aunque no pareciera muy útil para operaciones sencillas, esto resultará de utilidad en el caso que estemos evaluando un polinomio. Supongamos que usted está calculando los máximos y mínimos del polinomio P(x) = x^3 - 2x^2 -x +2 y uno de sus puntos críticos es x_1=\frac{2 + \sqrt{7}}{3}.

Para evalular el polinomio en esta expresión, lo más conveniente es guardarla en la memoria. Si queremos guardarla en el espacio B, seguimos los siguientes pasos

  • Escribimos la operación
    (2 + \sqrt{ \ }7)/3
  • Seguido de STO (presionando previamente SHITF)
  • Seguido de B (sin presionar ALPHA)

Posteriormente, deberá aparecer en la pantalla lo siguiente:

(2 + \sqrt{ \ }7)/3 \rightarrow B

Una vez que hemos almacenado este valor en memoria, podemos usarlo para evalular el polinomio en ese punto crítico, de la siguiente forma.

B^3 – 2B^2 -B +2


Difference of two squares

When carrying out mathematical operations it is common to find subtractions between two numbers, however, when finding the subtraction of the squares of two numbers we will say that this is a difference of squares and it is of our particular interest because through the distributive property, we can express it as the product of two factors.

Formally, if a and b are two real numbers, then the difference of their squares will be equal to the sum of the first plus the second, multiplied by the subtraction of the first by the second, that is,

This equality can be deduced by performing the distributive property of the real numbers, let’s see then,

This type of expression is often found in the development of algebraic operations and is used mainly for factoring operations, let’s see in the following examples how to apply this operation

Anuncios

Examples

Example 1

Factorize the expression 5^2 - 3^2. Note that in this case, we can simply apply the power of each of the summands and perform the subtraction directly.

5^2 - 3^2 = 25 - 9

= 16

Example 2

Factorize the expression x^2 - 9. We notice that in this case, one of the summands is an x squared and the other one is a nine, so we cannot make the subtraction between them so we apply the difference of squares noting that nine is equal to three squared.

x^2 - 9 = x^2 - 3^2

= (x-3)(x+3)

Example 3

Factorize the expression x^2 - 2. We notice that in this case, one of the summands is an x-squared and the other is two, so we cannot perform the subtraction between them so we apply the difference of squares noting that two can be rewritten as 2 = \left( \sqrt{2} \right)^2.

x^2 - 2 = x^2 -\left( \sqrt{2} \right)^2

= \left(x-\sqrt{2} \right) \left(x+\sqrt{2} \right)

In this way, we can notice that if the square root of a number is not exact, it can be rewritten to use the difference of squares.

Anuncios

Example 4

Factorize the expression 8 - x^6. We notice that in this case, one of the summands is 8 and the other one is x to six, so we cannot make the subtraction between them so we apply the difference of squares noting that eight can be rewritten as 8 = \left( \sqrt{8} \right)^2 and x to six as x^6 = \left( x^3 \right)^2.

8 - x^6 = \left( \sqrt{8} \right)^2 - \left(x^3 \right)^2

= \left(\sqrt{8}-x^3 \right) \left(\sqrt{8}+x^3 \right)

Example 5

Factorize the expression 36x^4 - 5x^8. We notice that in this case, we cannot make the subtraction between them so we apply the difference of squares using the observations exposed in the previous examples.

36x^4 - 5x^8 = \left( 6x^2 \right)^2 - \left( \sqrt{5}x^4 \right)^2

= \left(6x^2-\sqrt{5}x^4 \right) \left(6x^2+\sqrt{5}x^4 \right)