Pregunta de Reddit: ¿Cuál es la suma de los valores enteros que p puede tomar?

Mientras ojeaba reddit, me topé con este problema que comparte el usuario u/already_taken-chan, en el cual señala que «no encontró la respuesta». Una de las las respuestas con más puntaje me pareció extremadamente larga y la segunda con más puntaje, me pareció muy corta. Así que les comparto mi apreciación.

También pudiera interesarte

r/askmath - I couldn't find the answer to this question, asked my math teacher and he couldn't find it either, tried going into Δ > 0 but that gave me no answer, tried (-b +- sqrt(Δ))/2a but that just left me p being in a range that didn't give any of the answers, is the question wrong?

La pregunta está planteada en Turco, la traducción correcta al inglés sería: «If the equation has two different real roots, what is the sum of the integer values ​​p can take?», y al español, sería: «Si la ecuación tiene dos raíces reales diferentes, ¿cuál es la suma de los valores enteros que p puede tomar?«.

Primero debemos considerar la ecuación que se plantea y reescribirla como una ecuación cuadrática de la forma ax^2+bx+c=0 para que sea más fácil identificar los elementos involucrados en ella.

-x^2 + px + 3 = (x+2)^2

\Rightarrow -x^2 + px + 3 = x^2 - 4x + 4

\Rightarrow -x^2 + px + 3 - x^2 + 4x - 4 = 0

\Rightarrow -2x^2 + (p+4)x - 1 = 0

\Rightarrow 2x^2 - (p+4)x + 1 = 0

Ya que hemos reescrito esta ecuación, debemos tomar en cuenta que para que una ecuación de la forma ax^2+bx+c=0 tenga dos soluciones distintas, el discriminante de ella debe ser positivo, es decir,

b^2-4 \cdot a \cdot c > 0

Entonces, identificando a=2, b=-(p+4) y c=1, tenemos que

\left( -(p+4) \right)^2 - 4 \cdot (2) \cdot (1) > 0

\Rightarrow \left( p+4 \right)^2 - 8 > 0

\Rightarrow \left( p+4 \right)^2 > 8

Anuncios

En este punto pudiéramos plantear una Inecuación Cuadrática para calcular todos los valores para los cuales \left( p+4 \right)^2 - 8 > 0, pero resultará más fácil buscar los valores para los cuales sucede lo contrario, y descartar dichos valores.

Podemos tantear los valores de p para los cuales \left( p+4 \right)^2 \leq 8 y estos son: -2, -3, -4, -5 y -6; pues, si consideramos alguno de estos valores, digamos p=-2, tenemos que

\left( -2+4 \right)^2 < 8

\Rightarrow \left( 2 \right)^2 < 8

\Rightarrow 4 < 8

Entonces, retomando la pregunta original: «Si la ecuación tiene dos raíces reales diferentes, ¿cuál es la suma de los valores enteros que p puede tomar?«, los valores que p puede tomar son todos los enteros mayores que -2 o todos los valores enteros menores que -6, es decir, todos los valores de p tales que

p \in (-\infty,-6) \cup (-2,\infty), con p \in \mathbb{Z}

pero no tiene sentido considerar la suma de todos estos valores.

Anuncios

Aunque si queremos darle la vuelta a la cosa, podemos darnos cuenta que al sumar los números que no cumplen con la condición, es decir, -2, -3, -4, -5 y -6; y los sumamos, el resultado será el siguiente:

-2 -3 -4  -5 -6 = -20

Que es justamente la opción «A)» planteada entre las soluciones.

Optimización de funciones de ingreso, costo y utilidad

Uno de los propósitos de estudiar funciones de ingreso, costo y utilidad es de obtener los mejores resultados posibles, a esto se le conoce como optimización, sin embargo, debemos primero aclarar a qué nos referimos con los mejores resultados posibles.

También pudiera interesarte

Al definir funciones de Ingreso I(q), Costo C(q) y Utilidad U(q); definamos cuales son los valores de q para los cuales estas funciones alcanzan su valor óptimo:

  • I(q) alcanza su valor óptimo en q_0 si el valor I(q_0) es un máximo absoluto de la función, esto se debe a que nos interesa calcular los ingresos más altos.
  • C(q) alcanza su valor óptimo en q_0 si el valor C(q_0) es un mínimo absoluto de la función, esto se debe a que nos interesa calcular los costos más bajos.
  • U(q) alcanza su valor óptimo en q_0 si el valor U(q_0) es un máximo absoluto de la función, esto se debe a que nos interesa calcular las utilidades más altas.

De esta forma, es posible optimizar usando las herramientas que nos proveen las derivadas para calcular máximos y mínimos. Veamos en los siguientes ejemplos como optimizar funciones de ingreso, costo y utilidad.

Ejemplos

Ejemplo 1

Considerando las funciones que miden el costo e ingreso por la producción venta de q lavadoras, definidas de la siguiente forma:

C(q) = \frac{800}{1729} + \frac{2300}{5833} \cdot q^3

I(q) = \frac{140}{29} + \frac{36}{13} \cdot q^2

U(q) = I(q) - C(q)

Suponiendo que la producción tiene un tope de 20 lavadoras. Determine los ingresos óptimos, los costos óptimos y las utilidades óptimas.

Tomando en cuenta que la producción tiene un tope de 20 lavadoras, dichas funciones están definidas en el intervalo [0,20]. Entonces, debemos calcular los extremos relativos y los valores de la función en los extremos del intervalo [0,20], para comparar y determinar los extremos absolutos.

Anuncios

Empezando por la función de costos, calculamos puntos críticos de esta función usando la primera derivada:

C'(q) = \frac{6900}{5833} \cdot q^2

La derivada de la función de costos C'(q) es igual a cero cuando q=0, por lo tanto, este será nuestro punto crítico. Para determinar si es un máximo o mínimo, debemos usar el criterio de la segunda derivada, entonces calculamos segunda derivada de esta función:

C''(q) = \frac{13800}{5833} \cdot q

Evaluamos la segunda derivada de la función de costos C''(q) en q=0 y obtenemos que

C''(0) = \frac{13800}{5833} \cdot (0) = 0

A partir de este resultado concluimos que la función no alcanza ni un máximo ni un mínimo relativo en q=0. Continuamos evaluando la función en los extremos del intervalo [0,20]. Esto es,

C(0) = \frac{800}{1729} + \frac{2300}{5833} \cdot (0)^3 \approx 0.4626

C(20) = \frac{800}{1729} + \frac{2300}{5833} \cdot (20)^3 \approx 3154.92

En vista de que C(0) es el menor de ambos valores, concluimos que la función de costos alcanza un mínimo absoluto en q=0, es decir, los costos más bajos son de C(0) = 0.4626 que es precisamente cuando no hay producción.

Anuncios

Continuamos con la función de ingresos, calculamos puntos críticos de esta función usando la primera derivada:

I'(q) = \frac{72}{13} \cdot q

La derivada de la función de ingresos I'(q) es igual a cero cuando q=0, por lo tanto, este será nuestro punto crítico. Para determinar si es un máximo o mínimo, debemos usar el criterio de la segunda derivada, entonces calculamos segunda derivada de esta función:

I''(q) = \frac{72}{13}

Evaluamos la segunda derivada de la función de ingresos I''(q) en q=0 y obtenemos que

I''(0) = \frac{72}{13}

Al ser \frac{72}{13} un valor positivo, concluimos que la función alcanza un mínimo relativo en q=0. Continuamos evaluando la función en los extremos del intervalo [0,20]. Esto es,

I(0) = \frac{140}{29} + \frac{36}{13} \cdot (0)^2 \approx 4.82

I(20) = \frac{140}{29} + \frac{36}{13} \cdot (20)^2 \approx 1112.52

En vista de que I(20) es el mayor de ambos valores, concluimos que la función de ingresos alcanza un máximo absoluto en q=20, es decir, los ingresos más altos son de I(20) = 1112.52 que es precisamente cuando se llega al tope de la producción.

Anuncios

Finalizamos con la función de utilidades, calculamos puntos críticos de esta función usando la primera derivada:

U'(q) = \frac{72}{13} \cdot q - \frac{6900}{5833} \cdot q^2

La derivada de la función de utilidades U'(q) es igual a cero cuando q=0 o cuando q=4.68, por lo tanto, este será nuestro punto crítico. Para determinar si es un máximo o mínimo, debemos usar el criterio de la segunda derivada, entonces calculamos segunda derivada de esta función:

U''(q) = \frac{72}{13} - \frac{13800}{5833} \cdot q

Evaluamos la segunda derivada de la función de utilidades U''(q) en q=0 y en q=4.68, obtenemos que

U''(0) = \frac{72}{13} - \frac{13800}{5833} \cdot (0) = \frac{72}{13}

Al ser \frac{72}{13} un valor positivo, concluimos que la función alcanza un mínimo relativo en q=0.

U''(4.68) = \frac{72}{13} - \frac{13800}{5833} \cdot (4.68) \approx -5.5337

Al ser -5.5337 un valor negativo, concluimos que la función alcanza un máximo relativo en q=4.68. Evaluamos la función de utilidades en este valor pues es de nuestro interés:

U(4.68) = \frac{140}{29} + \frac{36}{13} \cdot (4.68)^2 - \left( \frac{800}{1729} + \frac{2300}{5833} \cdot (4.68)^3 \right) \approx 24.60

Continuamos evaluando la función en los extremos del intervalo [0,20]. Esto es,

U(0) = \frac{140}{29} + \frac{36}{13} \cdot (0)^2 - \left( \frac{800}{1729} + \frac{2300}{5833} \cdot (0)^3 \right) \approx 4.3574

U(20) = \frac{140}{29} + \frac{36}{13} \cdot (20)^2 - \left( \frac{800}{1729} + \frac{2300}{5833} \cdot (20)^3 \right) \approx -2042.4

En vista de que U(4.68) es el mayor de ambos valores, concluimos que la función de utilidades alcanza un máximo absoluto en q=4.68, es decir, las utilidades más altas son de U(4.68) = 24.60 que es cuando se producen y se venden aproximadamente 5 lavadoras.


Ejercicios Propuestos

Ejercicios Propuestos – Bosquejo de Polinomios

Anuncios

Puntos Críticos

Calcule los puntos críticos de las siguientes funciones y verifique si estos son máximos o mínimos locales. Finalmente, indique cuales son los intervalos de crecimiento y decrecimiento.

Recuerde que los puntos críticos de una función, son aquellos donde

f'(x)=0

  1. f(x)=x^2
  2. f(x)=x^3
  3. f(x)=x^4
  4. f(x)=x^5

  1. f(x)=x^2+2
  2. f(x)=x^3+3
  3. f(x)=x^4+4
  4. f(x)=x^5+5

  1. f(x)=x^2+2x
  2. f(x)=x^3+3x
  3. f(x)=x^4+4x
  4. f(x)=x^5+5x

  1. f(x)=x^2 + x - 2
  2. f(x)=x^2 - 8x + 15
  3. f(x)=x^2 + 2x - 8
  4. f(x)=x^2 - 3x - 18

  1. f(x)=\dfrac{x^3}{3} + \dfrac{x^2}{2} - 2x
  2. f(x)=\dfrac{4x^3}{3} - \dfrac{16x^2}{2} + 60x
  3. f(x)=\dfrac{x^3}{3} + x^2 - 8x
  4. f(x)=x^3 + \dfrac{3x^2}{2} - 6x
  1. f(x)=x^4 - 7x^3 + 6x^2 + 5
  2. f(x)=x^4 + 3x^3 - 4x^2 - 2
  3. f(x)=2x^4 + 2x^3 - 2x^2 + 6
  4. f(x)=x^4 - 2x^3 - 5x^2 + 1

  1. f(x)=xe^x
  2. f(x)=x^2e^x
  3. f(x)=x^3e^x
  4. f(x)=x^4e^x

  1. f(x)=e^{x^2}
  2. f(x)=e^{x^2-1}
  3. f(x)=e^{x^2-x}
  4. f(x)=e^{x^3-x^2}

  1. f(x)=x \ln(x)
  2. f(x)=x^2 \ln(x)
  3. f(x)=x^3 \ln(x)
  4. f(x)=x^4 \ln(x)

  1. f(x)= \ln(x+3)
  2. f(x)= \ln(x^2-1)
  3. f(x)= \ln(x^3-8)
  4. f(x)= \ln(x^4-16)
Anuncios

Puntos de Inflexión

Calcule los puntos de inflexión de las siguientes funciones. Finalmente, indique cuales son los intervalos de convexidad (cóncava hacia arriba) y concavidad (cóncava hacia abajo).

Recuerde que los posibles puntos de inflexión de una función, son aquellos donde

f''(x)=0$

  1. f(x)=x^2
  2. f(x)=x^3
  3. f(x)=x^4
  4. f(x)=x^5

  1. f(x)=x^2+2
  2. f(x)=x^3-3
  3. f(x)=x^4+4
  4. f(x)=x^5-5

  1. f(x)=x^2-2x
  2. f(x)=x^3+3x
  3. f(x)=x^4-4x
  4. f(x)=x^5+5x

  1. f(x)=x^2 + x - 2
  2. f(x)=x^2 - 8x + 15
  3. f(x)=x^2 + 2x - 8
  4. f(x)=x^2 - 3x - 18

  1. f(x)=x^3 - 6x^2 + 11x - 6
  2. f(x)=x^3 - 7x + 6
  3. f(x)=x^3 + 3x^2 - 4x - 12
  4. f(x)=x^3 + 4x^2 + x - 6
  1. f(x)=x^4 - 4x^3 - x^2 + 16x - 12
  2. f(x)=x^4 - 6x^3 + x^2 + 24x - 20
  3. f(x)=x^4 - 7x^3 + 9x^2 + 7x - 10
  4. f(x)=x^4 - 2x^3 - 5x^2 + 1

  1. f(x)=xe^x
  2. f(x)=x^2e^x
  3. f(x)=x^3e^x
  4. f(x)=x^4e^x

  1. f(x)=e^{x^2}
  2. f(x)=e^{x^2-1}
  3. f(x)=e^{x^2-x}
  4. f(x)=e^{x^3-x^2}

  1. f(x)=x \ln(x)
  2. f(x)=x^2 \ln(x)
  3. f(x)=x^3 \ln(x)
  4. f(x)=x^4 \ln(x)

  1. f(x)= \ln(x+3)
  2. f(x)= \ln(x^2-1)
  3. f(x)= \ln(x^3-8)
  4. f(x)= \ln(x^4-16)
Anuncios

Bosquejo de Polinomios

Para graficar un polinomio hay que tomar en cuenta varios puntos de interés referentes a la función y sus primeras dos derivadas.

  • Para determinar los puntos de corte con el Eje Y, se debe evaluar la función en cero, es decir, calcular f(0) (Sustituir la variable x por cero).
  • Para calcular los puntos de corte con el Eje X, se deben calcular los puntos para los cuales la función es igual a cero, es decir, calcular los valores de x para los cuales f(x)=0 (Para esto se puede usar el Método del Discriminante si el polinomio es cuadrático o el Método de Ruffini si es de mayor grado).
  • Para determinar los puntos críticos, se deben calcular los puntos para los cuales la derivada de la función es igual a cero, es decir, calcular los valores para los cuales f'(x)=0.
  • Para determinar los puntos de inflexión, se deben calcular los puntos para los cuales la segunda derivada de la función es igual a cero, es decir, calcular los valores para los cuales f''(x)=0.

Una vez calculados estos puntos, tome en cuenta que el comportamiento de la función está definido por el signo de la función y sus primeras dos derivadas. Si consideramos un intervalo (a,b) \subseteq \mathbb{R}.

  • Si f(x)>0 en (a,b) entonces la función está por encima del Eje X.
  • Si f(x)<0 en (a,b) entonces la función está por debajo del Eje Y.
  • Si f'(x)>0 en (a,b) entonces la función es creciente (\nearrow).
  • Si f'(x)<0 en (a,b) entonces la función es decreciente (\searrow).
  • Si f''(x)>0 en (a,b) entonces la función es convexa (\cup).
  • Si f''(x)<0 en (a,b) entonces la función es cóncava (\cap).

En los siguientes ejercicios haga un bosquejo de la gráfica de los siguientes polinomios considerando los siguientes pasos:

  • Calculamos los puntos de corte con los ejes y estudiamos su positividad (intervalos en los que es positiva o negativa).
  • Calculamos los puntos críticos y determinamos su monotonía (intervalos en los que crece o decrece).
  • Calculamos los puntos de inflexión y determinamos su concavidad (intervalos en los que es convexa o cóncava).
  • Calculamos las imágenes de los puntos de los puntos críticos y de inflexión.
  • Esbozar la gráfica.
Anuncios
  1. f(x)=x^2
  2. f(x)=x^3
  3. f(x)=x^4
  4. f(x)=x^5

  1. f(x) = x^2 + 4x - 5
  2. f(x) = x^2 + 5x + 4
  3. f(x) = x^2 + 8x + 15
  4. f(x) = x^2 - 1

  1. f(x) = - 4x^2 - 4x
  2. f(x) = 4x^2 + 4x
  3. f(x) = 2x^2 - 14x + 24
  4. f(x) = 2x^2 + 4x - 6

  1. f(x) = - 2x^3 - 2x^2 + 12x
  2. f(x) = 2x^3 - 6x^2 - 20x
  3. f(x) = - 5x^3 + 10x^2 + 75x
  4. f(x) = x^3 + 8x^2 + 16x

  1. f(x) = x^3 - 3x^2 - 16x + 48
  2. f(x) = x^3 - 5x^2 - 4x + 20
  3. f(x) = x^3 + 6x^2 - x - 30
  4. f(x) = x^3 - 4x^2 - 16x + 64
  1. f(x) = 5x^3 + 30x^2 + 15x - 50
  2. f(x) = x^3 - 13x + 12
  3. f(x) = - 2x^3 - 6x^2 + 26x + 30
  4. f(x) = 5x^3 + 30x^2 - 5x - 150

  1. f(x) = x^4 - 25x^2 + 144
  2. f(x) = x^4 - 2x^2 + 1
  3. f(x) = x^4 - 8x^2 + 16
  4. f(x) = x^4 - 8x^2 + 16

  1. f(x) = 10x^4 - 410x^2 + 4000
  2. f(x) = -x^4 + 45x^2 - 324
  3. f(x) = 9x^4 - 261x^2 + 900
  4. f(x) = 7x^4 - 203x^2 + 700

  1. f(x) = x^5 - 41x^3 + 400x
  2. f(x) = x^5 - 20x^3 + 64x
  3. f(x) = x^5 - 32x^3 + 256x
  4. f(x) = x^5 - 26x^3 + 25x

  1. f(x) = - 9x^5 + 1476x^3 - 57600x
  2. f(x) = - 2x^5 + 40x^3 - 128x
  3. f(x) = 2x^5 - 212x^3 + 4050x
  4. f(x) = 8x^5 - 488x^3 + 7200x
Anuncios

Optimización de funciones en la economía

Para cada una de las siguientes situaciones, responda las siguientes preguntas:

  • ¿Cuáles son valores de q para los cuales la función de ingreso alcanza máximos? ¿Cuáles son esos ingresos máximos?
  • ¿Cuáles son valores de q para los cuales la función de costos alcanza mínimos? ¿Cuáles son esos costos mínimos?
  • ¿Cuáles son valores de q para los cuales la función de utilidad alcanza máximos? ¿Cuáles son esas utilidades máximas?

  1. Sea 74 + \frac{3 \cdot q}{191} , la ecuación de oferta de caramelos en una confitería de la ciudad y suponga que los costos totales vienen dados de la forma \frac{7 \cdot q^2}{22} + 59 .
  2. Sea 40 + \frac{21 \cdot q}{125} , la ecuación de oferta de piñatas en una piñatería de la ciudad y suponga que los costos totales vienen dados de la forma \frac{13 \cdot q^2}{197} + 78 .
  3. Sea 35 + \frac{21 \cdot q}{293} , la ecuación de oferta de carne en una carnicería de la ciudad y suponga que los costos totales vienen dados de la forma \frac{q^2}{831} + 49 .
  4. Sea 50 + \frac{2 \cdot q}{129} , la ecuación de oferta de cachitos de jamón y queso en una panadería de la ciudad y suponga que los costos totales vienen dados de la forma \frac{2 \cdot q^2}{55} + 13 .

  1. Sea 55 + 3 \cdot q , la ecuación de oferta de llaves en una cerrajería de la ciudad y suponga que los costos totales vienen dados de la forma 0.094q^3 - 0.6 q^2 + 32 .
  2. Sea 685 + 20 \cdot q , la ecuación de oferta de hamburguesas en una hamburguesería de la ciudad y suponga que los costos totales vienen dados de la forma q^3 - 2 \cdot q^2 - 84 \cdot q + 360 .
  3. Sea 452 + 16 \cdot q , la ecuación de oferta de perros calientes en una perro calentero de la ciudad y suponga que los costos totales vienen dados de la forma 0.15q^3 - 0.6 \cdot q^2 + 32 .
  4. Sea 421 + 19 \cdot q , la ecuación de oferta de palmeritas en una panadería de la ciudad y suponga que los costos totales vienen dados de la forma 0.065q^3 - 3 \cdot q^2 + 20 \cdot q + 600 .

  1. Sea 493 + 0.10 \cdot q^2 , la ecuación de oferta de marcadores en una papelería de la ciudad y suponga que los costos totales vienen dados de la forma 0.1q^3 - q^2 + 65 \cdot q + 225 .
  2. Sea 635 + 0.3 \cdot q^2 , la ecuación de oferta de papas fritas en una restaurante de comida rápida de la ciudad y suponga que los costos totales vienen dados de la forma 0.11q^3 - 11 \cdot q^2 - 45 \cdot q + 567 .
  3. Sea 486 + 0.9 \cdot q^2 , la ecuación de oferta de colchones en una mueblería de la ciudad y suponga que los costos totales vienen dados de la forma 0.02q^3 - 12 \cdot q^2 + 27 \cdot q + 486 .
  4. Sea 60 + 0.5 \cdot q^2 , la ecuación de oferta de ropa en una calle de la ciudad y suponga que los costos totales vienen dados de la forma 0.35q^3 - q^2 + 21 \cdot q + 45 .

Expresiones Racionales

Habiendo estudiado las operaciones entre polinomios, particularmente la división de polinomios, podemos ampliar las operaciones entre fracciones como una herramienta para simplificar las operaciones entre polinomios antes de efectuarlas.

También pudiera interesarte

Definimos una expresión racional como el cociente entre dos polinomios. Formalmente, si P(x) y Q(x) son dos polinomios con Q(x) \neq 0, entonces el siguiente cociente será una expresión racional:

\dfrac{P(x)}{Q(x)}

Diremos que P(x) es el numerador (o dividendo) de la expresión y Q(x) es el denominador (o divisor) de la expresión. En este caso, al ser, P(x) y Q(x) polinomios, este tipo de expresiones racionales serán expresiones algebraicas racionales.

Operaciones entre Expresiones Racionales

Las operaciones entre expresiones racionales se efectúan de la misma forma en que se efectúan las operaciones entre fracciones, es decir, si A(x), B(x), C(x) y D(x) son polinomios, con B(x) y D(x) distintos de cero, definimos:

Suma de Expresiones Racionales

\dfrac{A(x)}{B(x)} + \dfrac{C(x)}{D(x)} = \dfrac{A(x) \cdot D(x) + B(x) \cdot C(x)}{B(x) \cdot D(x)}

Resta de Expresiones Racionales

\dfrac{A(x)}{B(x)} - \dfrac{C(x)}{D(x)} = \dfrac{A(x) \cdot D(x) - B(x) \cdot C(x)}{B(x) \cdot D(x)}

Multiplicación de Expresiones Racionales

\dfrac{A(x)}{B(x)} \cdot \dfrac{C(x)}{D(x)} = \dfrac{A(x) \cdot C(x)}{B(x) \cdot D(x)}

División de Expresiones Racionales

\dfrac{A(x)}{B(x)} \div \dfrac{C(x)}{D(x)} = \dfrac{A(x) \cdot D(x)}{B(x) \cdot C(x)}

Anuncios

El objetivo de plantear expresiones racionales es el de simplificar expresiones que a primera vista parezcan complicadas o engorrosas para trabajar. Veamos en los siguientes ejemplos como efectuar operaciones entre expresiones racionales y de ser posible, su simplificación.

Ejemplos

Ejemplo 1

Efectúe la suma de las expresiones racionales \frac{2x+5}{2x+3} y \frac{6x+4}{8x+3}, y de ser posible, simplifique el resultado.

\dfrac{2x+5}{2x+3} + \dfrac{6x+4}{8x+3}

= \dfrac{(2x+5) \cdot (8x+3) + (2x+3) \cdot (6x+4)}{(2x+3) \cdot (8x+3)}

= \dfrac{ 16x^2 + 6x + 40x + 15 + 12x^2 + 8x + 18x + 12 }{(2x+3) \cdot (8x+3)}

= \dfrac{ 28x^2 + 72x + 27 }{(2x+3) \cdot (8x+3)}

Notemos que en el numerador se efectuó la propiedad distributiva en ambos sumandos para poder sumar los elementos comunes, sin embargo, en el denominador no hizo falta aplicar la propiedad distributiva, pues ya la expresión estaba factorizada.

Ejemplo 2

Efectúe la resta de las expresiones racionales \frac{7x-2}{3x+1} menos \frac{5x+2}{2x+4}, y de ser posible, simplifique el resultado.

\dfrac{7x-2}{3x+1} - \dfrac{5x+2}{2x+4}

= \dfrac{(7x-2) \cdot (2x+4) + (3x+1) \cdot (5x+2)}{(3x+1) \cdot (2x+4)}

= \dfrac{ 14x^2 + 28x - 4x - 8 - (15x^2 + 6x + 5x + 2) }{(3x+1) \cdot 2 (x+2)}

= \dfrac{ -x^2 + 13x - 10 }{2(3x+1) \cdot (x+2)}

Anuncios

Ejemplo 3

Efectúe el producto de las expresiones racionales \frac{4x^2+6}{-7x+2} y \frac{4x-3}{2x^2+3}, y de ser posible, simplifique el resultado.

\dfrac{4x^2+6}{-7x+2} \cdot \dfrac{4x-3}{2x^2+3}

= \dfrac{(4x^2+6) \cdot (4x-3)}{(-7x+2) \cdot (2x^2+3)}

= \dfrac{2 (2x^2+3) \cdot (4x-3)}{(-7x+2) \cdot (2x^2+3)}

= 2 \cdot \dfrac{(2x^2+3) \cdot (4x-3)}{(-7x+2) \cdot (2x^2+3)}

= 2 \cdot \dfrac{ (4x-3) \cdot (2x^2+3)}{(-7x+2) \cdot (2x^2+3)}

= 2 \cdot \dfrac{(4x-3)}{(-7x+2)}

Ejercicios Propuestos

Ejercicios Propuestos – Interpretación Económica de la Derivada

Anuncios

Análisis Marginal

Para cada una de las siguientes situaciones, halle las funciones de ingreso marginal, costo marginal y utilidad marginal. Evalúe cada una en el valor indicado e interprete los resultados.

1.- Sea p=\frac{12}{100}q+10, la ecuación de oferta de cachitos de jamón y queso en una panadería de la ciudad. Si los costos para comprar materia prima varían de la forma C = q+5.

  • Calcule el Ingreso Marginal cuando se venden 10 cachitos.
  • Calcule el Costo Marginal cuando se producen 10 cachitos.
  • Calcule la Utilidad Marginal cuando se producen y venden 10 cachitos.

2.- Sea p=\frac{4}{3}q+300, la ecuación de oferta de pan francés en una panadería de la ciudad por unidad. Si los costos para comprar materia prima varían de la forma C = 0.33 \cdot q^2 + 20.

  • Calcule el Ingreso Marginal cuando se venden 50 unidades de pan francés.
  • Calcule el Costo Marginal cuando se producen 50 unidades de pan francés.
  • Calcule la Utilidad Marginal cuando se producen y venden 50 unidades de pan francés.

3.- Una fábrica de queso crema ha calculado la siguiente ecuación de oferta para cada 100 gramos de su producto: p=\frac{45}{2000}q^2+679. Si los costos para comprar materia prima varían de la forma C = 5q+43.

  • Calcule el Ingreso Marginal cuando se venden 100 kilos.
  • Calcule el Costo Marginal cuando se producen 100 kilos.
  • Calcule la Utilidad Marginal cuando se producen y venden 100 kilos.

4.- Una fábrica de lavadoras ha calculado la siguiente ecuación de oferta por cada unidad de su producto: p=\frac{78}{560}\sqrt[5]{q^9}+25000. Si los costos para comprar materia prima varían de la forma C = \frac{8}{5}q^3+33q-20.

  • Calcule el Ingreso Marginal cuando se venden 25 unidades.
  • Calcule el Costo Marginal cuando se producen 25 unidades.
  • Calcule la Utilidad Marginal cuando se producen y venden 25 unidades.
Anuncios

Elasticidad de Demanda

Para cada una de las siguientes funciones de demanda, halle la función de elasticidad de demanda puntual y calcule la elasticidad de demanda una vez que se fija el precio indicado, indique si la demanda es elástica, inelástica o tiene elasticidad unitaria.

  1. q=-3 \cdot p + 10 , p=8
  2. q=-4 \cdot p + 20, p=13
  3. q=-9 \cdot p + 15 , p=7
  4. q=-10 \cdot p + 35, p=20

  1. q=-0.7 \cdot p + 20 , p=11
  2. q=-0.4 \cdot p + 40, p=23
  3. q=-0.69 \cdot p + 9 , p=1
  4. q=-0.10 \cdot p + 18, p=6

  1. q=-10 \cdot p + 110 , p=63.4
  2. q=-50 \cdot p + 120, p=78.4
  3. q=-60 \cdot p + 125 , p=100.4
  4. q=-73 \cdot p + 357, p=237.67