Radicales

Al definir las potencias, encontramos una forma de denotar el producto de un número multiplicado por él mismo reiteradas veces. De esta forma tenemos que

  • Al considerar el número nueve, tres es un número tal que al multiplicarlo por él mismo, el resultado es exactamente nueve, es decir,
    3^2 = 9.
  • Al considerar el número cuatro, dos es un número tal que al multiplicarlo por él mismo, el resultado es exactamente cuatro, es decir,
    2^2 = 4.
  • Al considerar el número sesenta y cuatro, ocho es un número tal que al multiplicarlo por él mismo, el resultado es exactamente sesenta y cuatro, es decir,
    8^2 = 64.

También pudiera interesarte

Esta idea es bastante intuitiva pero, ¿y si consideramos el número dos? ¿Cuál el número tal que al multiplicarlo por sí mismo, el resultado es exactamente dos? ¿Será uno? ¿Dos? ¿Uno y un medio? ¿Uno y un cuarto? Los números número enteros o fracciones de enteros en los que podemos pensar no aportarán ninguna solución. Es por esto que recurrimos a un nuevo número que satisface esta condición, lo llamaremos es la raíz cuadrada de dos y usamos la notación de radical (\sqrt{ \ \ }) para denotarlo de la siguiente manera

raíz cuadrada de dos | totumat.com

Aunque no sepamos exactamente toda la extensión decimal de este número sabemos que, por definición, es un número tal que al multiplicarlo por él mismo, el resultado es exactamente dos, es decir, \left( \sqrt{2} \right)^2 = 2. Esta notación se puede extender para otros números en los que se presente la misma situación.

  • Al considerar el número cinco, la raíz cuadrada de cinco es un número tal que al multiplicarlo por él mismo, el resultado es exactamente cinco, es decir,
    \left( \sqrt{5} \right)^2 = 5.
  • Al considerar el número doce, la raíz cuadrada de doce es un número tal que al multiplicarlo por él mismo, el resultado es exactamente doce, es decir,
    \left( \sqrt{12} \right)^2 = 12.
  • Al considerar el número treinta, la raíz cuadrada de treinta es un número tal que al multiplicarlo por él mismo, el resultado es exactamente treinta, es decir,
    \left( \sqrt{30} \right)^2 = 30.
  • Al considerar el número uno, la raíz cuadrada de uno es un número tal que al multiplicarlo por él mismo, el resultado es exactamente uno, es decir,
    \left( \sqrt{1} \right)^2 = 1.
    En este caso, notemos que \sqrt{1} = 1.
  • Al considerar el número menos tres, podemos decir de forma general que la raíz cuadrada de un número negativo no está definida pues no existe un número que multiplicado por sí mismo sea un número negativo.
Anuncios

Muy bien, ahora, ¿cuál el número tal que al multiplicarlo por sí mismo tres veces, el resultado es exactamente dos? A este número lo llamaremos es la raíz cúbica de dos y usamos la notación de radical (\sqrt{ \ \ }) con el índice tres para denotarlo de la siguiente manera

raíz cúbica de dos | totumat.com

Aunque no sepamos exactamente toda la extensión decimal de este número sabemos que, por definición, es un número tal que al multiplicarlo por él mismo tres veces, el resultado es exactamente dos, es decir, \left( \sqrt[3]{2} \right)^3 = 2. Esta notación se puede extender para otros números en los que se presente la misma situación.

  • Al considerar el número siete, la raíz cúbica de siete es un número tal que al multiplicarlo por él mismo tres veces, el resultado es exactamente siete, es decir,
    \left( \sqrt[3]{7} \right)^{3} = 7.
  • Al considerar el número quince, la raíz cúbica de quince es un número tal que al multiplicarlo por él mismo tres veces, el resultado es exactamente quince, es decir,
    \left( \sqrt[3]{15} \right)^{3} = 15.
  • Al considerar el número menos uno, la raíz cúbica de menos uno es un número tal que al multiplicarlo por él mismo tres veces, el resultado es exactamente menos uno, es decir,
    \left( \sqrt[3]{-1} \right)^{3} = -1.
    En este caso, notemos que \sqrt[3]{-1} = -1.
  • Al considerar el número menos veinticuatro, la raíz cúbica de menos veinticuatro es un número tal que al multiplicarlo por él mismo tres veces, el resultado es exactamente menos veinticuatro, es decir,
    \left( \sqrt[3]{-24} \right)^{3} = -24.

Los radicales se pueden usar para expresar números que cumplen con este tipo de condiciones. De forma general podemos decir que si consideramos un número a y n un número entero mayor que uno, entonces definimos la raíz n-ésima de a como un número tal que al multiplicarlo por sí mismo n veces, el resultado es exactamente a, usamos la notación de radical (\sqrt{ \ \ }) con el índice n para denotarlo de la siguiente manera

radicales, índice y base | totumat.com

Considerando que si n es un número par, la raíz n-ésima de a está definida sólo si a \geq 0. De esta forma, tenemos que

  • Al considerar el número ocho, la raíz sexta de ocho es un número tal que al multiplicarlo por él mismo seis veces, el resultado es exactamente ocho, es decir,
    \left( \sqrt[6]{8} \right)^{6} = 8.
  • Al considerar el número menos diez, la raíz quinta de menos diez es un número tal que al multiplicarlo por él mismo cinco veces, el resultado es exactamente menos diez, es decir,
    \left( \sqrt[5]{-10} \right)^{5} = -10.
  • Al considerar el número trece, la raíz vigésima de trece es un número tal que al multiplicarlo por él mismo veinte veces, el resultado es exactamente trece, es decir,
    \left( \sqrt[20]{13} \right)^{20} = 13.

Propiedades de las Potencias

A continuación se presentará una lista de algunas propiedades de la potencia de un número, del producto y la división. Sean a y b números reales; m y n números naturales, entonces

1. a^0 = 1, todo número elevado a la cero es igual a uno, esto aplica incluso si a=0.

2. a^1 = a, todo número real se puede expresar con exponente.

3. a^m \cdot a^n = a^{m+n}, al multiplicar dos números que tienen la misma base, mantenemos la misma base y sumamos los exponentes. Esto se debe a que

a^m \cdot a^n = \underbrace{a \cdot a \cdot \ldots \cdot a}_{m-veces} \cdot \underbrace{a \cdot a \cdot \ldots \cdot a}_{n-veces} = \underbrace{a \cdot a \cdot \ldots \cdot a}_{(m+n)-veces}

4. (a^m)^n = a^{m \cdot n}, si tenemos un número elevado a una potencias y a su vez esta expresión está elevada a una potencias, entonces multiplicamos las potencias. Esto se debe a

(a^m)^n = \underbrace{a^m \cdot a^m \cdot \ldots \cdot a^m}_{n-veces} = a^{\overbrace{m+m+\ldots+m}^{n-veces}} = a^{m \cdot n}

5. (a \cdot b)^n = a^n \cdot b^n, si un producto está elevado a una potencia, podemos distribuir el exponente entre cada uno de los elementos del producto. Esto se debe a

(a \cdot b)^n = \underbrace{(a \cdot b) \cdot (a \cdot b) \cdot \ldots \cdot (a \cdot b)}_{n-veces} = \underbrace{a \cdot a \cdot \ldots \cdot a}_{n-veces} \cdot \underbrace{b \cdot b \cdot \ldots \cdot b}_{n-veces} = a^n \cdot b^n

También pudiera interesarte

6. a^{-1} = \dfrac{1}{a}, \ a \neq 0, el inverso multiplicativo de todo número distinto de cero se puede expresar como el número con exponente menos uno (-1) o como el cociente de uno entre ese número.

7. a^{-n} = \dfrac{1}{a^n}, \ a \neq 0, todo número distinto de cero con una potencia negativa, se puede reescribir como uno sobre el mismo número pero con potencia positiva.

8. \dfrac{a^m}{a^n} = a^{m-n}, \ a \neq 0, al dividir dos números que tienen la misma base, mantenemos la misma base y restamos los exponentes, el exponente de arriba menos el de abajo. Supongamos que m > n para entender esta idea, entonces, esto se debe a que

\dfrac{a^m}{a^n} = \dfrac{\overbrace{a \cdot a \cdot \ldots \cdot a}^{m-veces} }{ \underbrace{a \cdot a \cdot \ldots \cdot a}_{n-veces}} = \dfrac{\overbrace{a \cdot a \cdot \ldots \cdot a}^{n-veces} }{ \underbrace{a \cdot a \cdot \ldots \cdot a}_{n-veces}} \cdot \dfrac{\overbrace{a \cdot a \cdot \ldots \cdot a}^{(m-n)-veces}}{1} = a^{m-n}

9. \dfrac{a^m}{a^n} = \dfrac{1}{a^{n-m}}, \ a \neq 0, al dividir dos números que tienen la misma base, mantenemos la misma base en el denominador y restamos los exponentes, el exponente de abajo menos el de arriba. Supongamos que m < n para entender esta idea, entonces, esto se debe a que

\dfrac{a^m}{a^n} = \dfrac{\overbrace{a \cdot a \cdot \ldots \cdot a}^{m-veces} }{ \underbrace{a \cdot a \cdot \ldots \cdot a}_{n-veces}} = \dfrac{\overbrace{a \cdot a \cdot \ldots \cdot a}^{m-veces} }{ \underbrace{a \cdot a \cdot \ldots \cdot a}_{m-veces}} \cdot \dfrac{1}{\underbrace{a \cdot a \cdot \ldots \cdot a}_{(n-m)-veces}} = \dfrac{1}{a^{n-m}}

10. \left( \dfrac{a}{b} \right)^n = \dfrac{a^n}{b^n}, \ b \neq 0, si un cociente está elevado a una potencia, podemos distribuir el exponente entre cada uno de los elementos del cociente. Esto se debe a

\left( \dfrac{a}{b} \right)^n = \underbrace{\dfrac{a}{b} \cdot \dfrac{a}{b} \cdot \ldots \cdot \dfrac{a}{b}}_{n-veces} = \dfrac{ \overbrace{a \cdot a \cdot \ldots \cdot a}^{n-veces} }{ \underbrace{b \cdot b \cdot \ldots \cdot b}_{n-veces}} = \dfrac{a^n}{b^n}


Esta lista es citada por algunos autores como la Ley de las Potencias o Ley de los Exponentes, pero estas en realidad, son propiedades que se deducen del producto entre números reales. De forma resumida, tenemos que

Lista de las Propiedades de las Potencias

a^0 = 1

a^1 = a

a^m \cdot a^n = a^{m+n}

(a^m)^n = a^{m \cdot n}

(a \cdot b)^n = a^n \cdot b^n

a^{-1} = \dfrac{1}{a}, \ a \neq 0

\left( \dfrac{a}{b} \right)^{-1} = \dfrac{b}{a}, \ a,b \neq 0

a^{-n} = \dfrac{1}{a^n}, \ a \neq 0

\dfrac{a^m}{a^n} = a^{m-n}, \ a \neq 0

\dfrac{a^m}{a^n} = \dfrac{1}{a^{n-m}}, \ a \neq 0

\left( \dfrac{a}{b} \right)^n = \dfrac{a^n}{b^n}, \ b \neq 0

Estas propiedades se pueden usar para simplificar o expandir expresiones algebraicas, es decir, aquellas que se expresan como suma, resta, producto y división de números reales. Veamos en los siguientes ejemplos cómo usar estas propiedades.

Anuncios

Ejemplos

Ejemplo 1

Simplifique la expresión 2^2 \cdot 2^3 usando únicamente las propiedades de las potencias.

Notamos que los factores involucrados tienen la misma base, por lo tanto, podemos sumar sus exponentes,

2^7 \cdot 2^3 = 2^{7+3} = 2^{10}

Ejemplo 2

Simplifique la expresión 3^4 \cdot 3 usando únicamente las propiedades de las potencias.

Notamos que los factores involucrados tienen la misma base, por lo tanto, podemos sumar sus exponentes considerando que 3 = 3^1,

3^4 \cdot 3^1 = 3^{4+1} = 3^5

Ejemplo 3

Simplifique la expresión 9^5 \cdot 9^2 \cdot 9^{10} usando únicamente las propiedades de las potencias.

Notamos que los factores involucrados tienen la misma base, por lo tanto, podemos sumar sus exponentes,

9^5 \cdot 9^2 \cdot 9 = 9^{5+2+1} = 9^{8}

Finalmente, podemos descomponer el número 9 en factores primos para obtener que

9^{8} = \left( 3^2 \right)^{8} = 3^{2 \cdot 8} = 3^{16}

Ejemplo 4

Simplifique la expresión 3^{4} \cdot 3^{2} \cdot 5^{6} usando únicamente las propiedades de las potencias.

Sumamos los exponentes de los factores con la misma base,

3^4 \cdot 3^2 \cdot 5^{6} = 3^{4+2} \cdot 5^{6} = 3^{6} \cdot 5^{6}

Como ambas bases tienen el mismo exponente, podemos agrupar ambas bases bajo el mismo exponente,

3^{6} \cdot 5^{6} = \left( 3 \cdot 5 \right)^{6}

Anuncios

Ejemplo 5

Simplifique la expresión \left( 7^{9} \cdot 7^{-2} \cdot 7^{5} \right)^{2} usando únicamente las propiedades de las potencias.

Sumamos los exponentes de los factores con la misma base,

\left( 7^{9} \cdot 7^{-2} \cdot 7^{5} \right)^{2} = \left( 7^{9-2+5} \right)^{2} = \left( 7^{12} \right)^{2}

Multiplicamos el exponente que está fuera del paréntesis con el exponente que está dentro del paréntesis

\left( 7^{12} \right)^{2} =7^{12 \cdot 2} = 7^{24}

Ejemplo 6

Simplifique la expresión \frac{2^5}{2^3} usando únicamente las propiedades de las potencias.

Notamos que los elementos involucrados tienen la misma base, por lo tanto, podemos restar sus exponentes,

\frac{2^5}{2^3} = 2^{5-3} = 2^{2}

Ejemplo 7

Simplifique la expresión \frac{4^{7} \cdot 3^{-15} \cdot 3^{4}}{4^{3} \cdot 4^{5} \cdot 3^{-20}} usando únicamente las propiedades de las potencias.

Sumamos los exponentes de los factores con la misma base,

\frac{4^{7} \cdot 3^{-15} \cdot 3^{4}}{4^{3} \cdot 4^{5} \cdot 3^{-20}} = \frac{4^{7} \cdot 3^{-15+4}}{4^{3+5} \cdot 3^{-20}} = \frac{4^{7} \cdot 3^{-11}}{4^{8} \cdot 3^{-20}}

Separamos las fracciones para agrupar las divisiones que tienen la misma base

\frac{4^{7} \cdot 3^{-11}}{4^{8} \cdot 3^{-20}} = \frac{4^{7}}{4^{8}} \cdot \frac{3^{-11}}{3^{-20}}

Restamos los exponentes de los factores con la misma base,

\frac{4^{7}}{4^{8}} \cdot \frac{3^{-11}}{3^{-20}} = 4^{7-8} \cdot 3^{-11-(-20)} = 4^{-1} \cdot 3^{9}

Descomponemos el número 4 en factores primos para obtener que

\left( 2^2 \right)^{-1} \cdot 3^{9} = 2^{-2} \cdot 3^{9}

Finalmente, podemos reescribir la expresión 2^{-2} como \frac{1}{2^{2}} para obtener la siguiente fracción

2^{-2} \cdot 3^{9} = \frac{1}{2^2} \cdot 3^{9} = \frac{3^9}{2^2}

Anuncios

Ejemplo 8

Efectúe la operación \left( -\frac{5}{2} \right)^2 usando la definición de potencia y las operaciones entre números racionales.

Debemos tomar en cuenta que si elevamos un número al cuadrado, esto es multiplicar un número por él mismo, dos veces. Entonces,

\left( -\frac{5}{2} \right)^2 = \left( -\frac{5}{2} \right) \cdot \left( -\frac{5}{2} \right)

Por otra parte, la fracción -\frac{5}{2} se puede reescribir como \frac{-5}{2}, entonces podemos reescribir este producto de la siguiente forma:

\left( -\frac{5}{2} \right) \cdot \left( -\frac{5}{2} \right) = \frac{-5}{2} \cdot \frac{-5}{2}

Finalmente, podemos efectuar el producto de las fracciones y recurriendo a la ley de los signos en el numerador, obtenemos lo siguiente:

\frac{(-5) \cdot (-5)}{2 \cdot 2} = \frac{25}{4}

Ejemplo 9

Efectúe la operación \left( -\frac{2}{3} \right)^3 usando la definición de potencia y las operaciones entre números racionales.

Debemos tomar en cuenta que si elevamos un número al cubo, esto es multiplicar un número por él mismo, tres veces. Entonces,

\left( -\frac{2}{3} \right)^3 = \left( -\frac{2}{3} \right) \cdot \left( -\frac{2}{3} \right) \cdot \left( -\frac{2}{3} \right)

Por otra parte, la fracción -\frac{2}{3} se puede reescribir como \frac{-2}{3}, , entonces podemos reescribir este producto de la siguiente forma:

\left( -\frac{2}{3} \right) \cdot \left( -\frac{2}{3} \right) \cdot \left( -\frac{2}{3} \right) = \frac{-2}{3} \cdot \frac{-2}{3} \cdot \frac{-2}{3}

Finalmente, podemos efectuar el producto de las fracciones y recurriendo a la ley de los signos en el numerador, obtenemos lo siguiente:

\frac{(-2) \cdot (-2) \cdot (-2)}{3 \cdot 3 \cdot 3} = \frac{-8}{27} = - \frac{8}{27}