Reglas de Derivación

  1. Notación
  2. Regla de la suma
    1. Ejemplos
      1. Ejemplo 1
      2. Ejemplo 2
      3. Ejemplo 3
      4. Ejemplo 4
  3. Regla del producto por un escalar
    1. Ejemplos
      1. Ejemplo 5
      2. Ejemplo 6
      3. Ejemplo 7
      4. Ejemplo 8
  4. Regla del producto
    1. Ejemplos
      1. Ejemplo 9
      2. Ejemplo 10
      3. Ejemplo 11
      4. Ejemplo 12
  5. Regla de la división
    1. Ejemplos
      1. Ejemplo 13
      2. Ejemplo 14
      3. Ejemplo 15
      4. Ejemplo 16

Notación

Dependiendo del contexto, es necesario usar diferentes notaciones para la derivada. Por defecto, si queremos calcular la derivada de una función explícitamente definida como f(x), usamos la notación f'(x).

Sin embargo, al derivar la expresión que define a la función, puede resultar necesario usar otro tipo de notación como sigue:

\big( f(x) \big)'

También podemos recurrir a la definición propiamente de lo que es una derivada para denotarla. Recordemos que formalmente la derivada de una función es una razón de cambio puntual, es decir, el cambio en el Eje Y entre el cambio en el Eje X.

Pero al calcular el límite cuando x tiende a x_0 estos cambios se hacen infinitamente pequeños, a estos cambios los llamamos diferenciales, al cambio infinitamente pequeño en el Eje Y lo llamamos diferencial de y y lo denotamos por dy; al cambio infinitamente pequeño en el Eje X lo llamamos diferencial de x y lo denotamos por dx.

Es por esto, que la derivada de una función se expresa como un cociente de diferenciales de la siguiente manera:

\dfrac{dy}{dx}

Esta notación se lee la derivada de y respecto a x.

Particularmente, si la variable y está definida de forma pendiente a través de una función f(x) entonces usamos la notación

\dfrac{df}{dx} (x)

También pudiera interesarte

Una vez que hemos determinado la derivada de las funciones elementales, considerando la definición de derivada, es posible deducir la derivada de las operaciones básicas entre funciones. Formalmente, si f(x) y g(x) son dos funciones; y c es un número real, definimos las siguientes reglas:

Regla de la suma

Si f(x) y g(x) son dos funciones, definimos la derivada de la suma, como la suma de las derivadas, es decir,

\big( f(x) \pm g(x) \big)' = f'(x) \pm g'(x)

Ejemplos

Ejemplo 1

Considerando la función f(x)=x - x^{7}, calcule su derivada aplicando la regla de derivación para la suma. Para esto, denotamos primero la derivada:

f'(x)=\left( x  -  x^{7} \right)'

Debemos notar que esta función está definida como la suma funciones elementales, entonces podemos separar cada uno de los sumandos y expresar sus derivadas

f'(x)=( x )' - \left( x^{7} \right)'

Finalmente, consultamos la tabla de derivadas y calculamos las derivadas respectivas para obtener que

f'(x) = 1 - 7 x^{6}

Ejemplo 2

Considerando la función f(x)=\textit{\Large e}^{x} - x^{10}, calcule su derivada aplicando la regla de derivación para la suma. Para esto, denotamos primero la derivada:

f'(x)=\left( \textit{\Large e}^{x} - x^{10} \right)'

Debemos notar que esta función está definida como la suma funciones elementales, entonces podemos separar cada uno de los sumandos y expresar sus derivadas

f'(x)=\left( \textit{\Large e}^{x} \right)' - \left( x^{10} \right)'

Finalmente, consultamos la tabla de derivadas y calculamos las derivadas respectivas para obtener que

f'(x) = \textit{\Large e}^{x} - 10 x^{9}

Ejemplo 3

Considerando la función f(x)=\frac{1}{x} - \ln{\left(x \right)} - x^{10} - \textit{\Large e}^{x}, calcule su derivada aplicando la regla de derivación para la suma. Para esto, denotamos primero la derivada:

f'(x)=\left( \frac{1}{x} - \ln{\left(x \right)} - x^{10} - \textit{\Large e}^{x} \right)'

Debemos notar que esta función está definida como la suma funciones elementales, entonces podemos separar cada uno de los sumandos y expresar sus derivadas

f'(x)=\left( \frac{1}{x} \right)' - \left( \ln{\left(x \right)} \right)' - \left( x^{10} \right)' - \left( \textit{\Large e}^{x} \right)'

Finalmente, consultamos la tabla de derivadas y calculamos las derivadas respectivas para obtener que

f'(x) = - \frac{1}{x^{2}} - \frac{1}{x} - 10 x^{9} - \textit{\Large e}^{x}

Ejemplo 4

Considerando la función f(x)=\frac{1}{x} + \ln{\left(x \right)} - \frac{1}{x^{\frac{17}{3}}}, calcule su derivada aplicando la regla de derivación para la suma. Para esto, denotamos primero la derivada:

f'(x)=\left( \frac{1}{x} + \ln{\left(x \right)} - \frac{1}{x^{\frac{17}{3}}} \right)'

Debemos notar que esta función está definida como la suma funciones elementales, entonces podemos separar cada uno de los sumandos y expresar sus derivadas

f'(x)=\left( \frac{1}{x} \right)' + \left( \ln{\left(x \right)} \right)' - \left( \frac{1}{x^{\frac{17}{3}}} \right)'

Finalmente, consultamos la tabla de derivadas y calculamos las derivadas respectivas para obtener que

f'(x) = - \frac{1}{x^{2}} + \frac{1}{x} + \frac{17}{3 x^{\frac{20}{3}}}




Regla del producto por un escalar

Si f(x) es una función y si a es un escalar, definimos la derivada de un escalar multiplicado por una función como dicho escalar multiplicado por la derivada de la función, es decir,

\big( a \cdot f(x) \big)' = a \cdot f'(x)


Nota: Diremos que un número real a es un escalar, porque cambia la escala de la función, pues dependiendo de su valor, puede contraerla o expandirla.


Ejemplos

Ejemplo 5

Considerando la función f(x)=4 \textit{\Large e}^{x} + 7 \sqrt{x}, calcule su derivada aplicando la regla de derivación para el producto por un escalar. Para esto, denotamos primero la derivada:

f'(x)=\left( 4 \textit{\Large e}^{x} + 7 \sqrt{x} \right)'

Debemos notar que esta función está definida como la suma funciones elementales, entonces podemos separar cada uno de los sumandos y expresar sus derivadas

f'(x)=\left( 4 \textit{\Large e}^{x} \right)' + \left( 7 \sqrt{x} \right)'

Una vez que hemos separado los sumandos, podemos sacar los escalares de cada uno de estos sumandos

f'(x)=4 \left( \textit{\Large e}^{x} \right)' + 7 \left( \sqrt{x} \right)'

Finalmente, consultamos la tabla de derivadas y calculamos las derivadas respectivas para obtener que

f'(x) = 4 \textit{\Large e}^{x} + \frac{7}{2 \sqrt{x}}

Ejemplo 6

Considerando la función f(x)=\frac{8}{x} + 9 \textit{\Large e}^{x} - 9 \ln{\left(x \right)}, calcule su derivada aplicando la regla de derivación para el producto por un escalar. Para esto, denotamos primero la derivada:

f'(x)=\left( \frac{8}{x} + 9 \textit{\Large e}^{x} - 9 \ln{\left(x \right)} \right)'

Debemos notar que esta función está definida como la suma funciones elementales, entonces podemos separar cada uno de los sumandos y expresar sus derivadas

f'(x)=\left( \frac{8}{x} \right)' + \left( 9 \textit{\Large e}^{x} \right)' - \left( 9 \ln{\left(x \right)} \right)'

Una vez que hemos separado los sumandos, podemos sacar los escalares de cada uno de estos sumandos

f'(x)=8 \left( \frac{1}{x} \right)' + 9 \left( \textit{\Large e}^{x} \right)' - 9 \left( \ln{\left(x \right)} \right)'

Finalmente, consultamos la tabla de derivadas y calculamos las derivadas respectivas para obtener que

f'(x) = - \frac{8}{x^{2}} + 9 \textit{\Large e}^{x} - \frac{9}{x}

Ejemplo 7

Considerando la función f(x)=5 x - 9 x^{2} - 5 \sqrt{x}, calcule su derivada aplicando la regla de derivación para el producto por un escalar. Para esto, denotamos primero la derivada:

f'(x)=\left( 5 x - 9 x^{2} - 5 \sqrt{x} \right)'

Debemos notar que esta función está definida como la suma funciones elementales, entonces podemos separar cada uno de los sumandos y expresar sus derivadas

f'(x)=\left( 5 x \right)' - \left( 9 x^{2} \right)' - \left( 5 \sqrt{x} \right)'

Una vez que hemos separado los sumandos, podemos sacar los escalares de cada uno de estos sumandos

f'(x)=5 \left( x \right)' - 9 \left( x^{2} \right)' - 5 \left( \sqrt{x} \right)'

Finalmente, consultamos la tabla de derivadas y calculamos las derivadas respectivas para obtener que

f'(x) = 5 - 18 x - \frac{5}{2 \sqrt{x}}

Ejemplo 8

Considerando la función f(x)=\frac{9}{x} - 8 \sqrt[9]{x} - 6 \sqrt{x} - 4\textit{\Large e}^{x}, calcule su derivada aplicando la regla de derivación para el producto por un escalar. Para esto, denotamos primero la derivada:

f'(x)=\left( \frac{9}{x} - 8 \sqrt[9]{x} - 6 \sqrt{x} - 4\textit{\Large e}^{x} \right)'

Debemos notar que esta función está definida como la suma funciones elementales, entonces podemos separar cada uno de los sumandos y expresar sus derivadas

f'(x)=\left( \frac{9}{x} \right)' - \left( 8 \sqrt[9]{x} \right)' - \left( 6 \sqrt{x} \right)' - \left( 4\textit{\Large e}^{x} \right)'

Una vez que hemos separado los sumandos, podemos sacar los escalares de cada uno de estos sumandos

f'(x)=9 \left( \frac{1}{x} \right)' - 8 \left( \sqrt[9]{x} \right)' - 6 \left( \sqrt{x} \right)' - 4 \left( \textit{\Large e}^{x} \right)'

Finalmente, consultamos la tabla de derivadas y calculamos las derivadas respectivas para obtener que

f'(x) = - \frac{9}{x^{2}} - \frac{8}{9 x^{\frac{8}{9}}} - \frac{3}{\sqrt{x}} - 4\textit{\Large e}^{x}




Regla del producto

Si f(x) y g(x) son dos funciones, considerando ambos factores, definimos la derivada de la siguiente forma:

la derivada del primero, por el segundo sin derivar, más, el primero sin derivar, por la derivada del segundo

\big( f(x) \cdot g(x) \big)' = f'(x) \cdot g(x) + f(x) \cdot g'(x)

Ejemplos

Ejemplo 9

Considerando la función f(x)=\left( - 5 \sqrt{x} \right) \cdot \left( - 3 \ln{\left(x \right)} \right) , calcule su derivada aplicando la regla de derivación para el producto. Para esto, denotamos primero la derivada:

f'(x)=\left[ \left( - 5 \sqrt{x} \right) \cdot \left( - 3 \ln{\left(x \right)} \right) \right]'

Debemos notar que esta función está definida como el producto de dos funciones, aplicamos la regla del producto y expresamos las derivadas

f'(x)=\left( - 5 \sqrt{x} \right)' \cdot \left( - 3 \ln{\left(x \right)} \right) + \left( - 5 \sqrt{x} \right) \cdot \left( - 3 \ln{\left(x \right)} \right)'

Consultamos la tabla de derivadas y calculamos las derivadas respectivas para obtener que

f'(x) = \left( - \frac{5}{2 \sqrt{x}} \right) \cdot \left( - 3 \ln{\left(x \right)} \right) + \left( - 5 \sqrt{x} \right) \cdot \left( - \frac{3}{x} \right)

Finalmente, simplificamos para obtener el siguiente el resultado

f'(x) = \frac{15 \ln(x)}{2 \sqrt{x}} + \frac{15 \sqrt{x}}{x}

Ejemplo 10

Considerando la función f(x)=6 x \cdot \left( - 9 \ln{\left(x \right)} \right), calcule su derivada aplicando la regla de derivación para el producto. Para esto, denotamos primero la derivada:

f'(x)=\left[ 6 x \cdot \left( - 9 \ln{\left(x \right)} \right) \right]'

Debemos notar que esta función está definida como el producto de dos funciones, aplicamos la regla del producto y expresamos las derivadas

f'(x)=\left( 6 x \right)' \cdot \left( - 9 \ln{\left(x \right)} \right) + \left( 6 x \right) \cdot \left( - 9 \ln{\left(x \right)} \right)'

Consultamos la tabla de derivadas y calculamos las derivadas respectivas para obtener que

f'(x) = \left( 6 \right) \cdot \left( - 9 \ln{\left(x \right)} \right) + \left( 6 x \right) \cdot \left( - \frac{9}{x} \right)

Finalmente, simplificamos para obtener el siguiente el resultado

f'(x) = -54 \cdot \ln(x) - 54

Ejemplo 11

Considerando la función f(x)=- 3 \textit{\Large e}^{x} \cdot 6 x^{4}, calcule su derivada aplicando la regla de derivación para el producto. Para esto, denotamos primero la derivada:

f'(x)=\left[ - 3 \textit{\Large e}^{x} \cdot 6 x^{4} \right]'

Debemos notar que esta función está definida como el producto de dos funciones, aplicamos la regla del producto y expresamos las derivadas

f'(x)=\left( - 3 \textit{\Large e}^{x} \right)' \cdot \left( 6 x^{4} \right) + \left( - 3 \textit{\Large e}^{x} \right) \cdot \left( 6 x^{4} \right)'

Consultamos la tabla de derivadas y calculamos las derivadas respectivas para obtener que

f'(x) = \left( - 3 \textit{\Large e}^{x} \right) \cdot \left( 6 x^{4} \right) + \left( - 3 \textit{\Large e}^{x} \right) \cdot \left( 24 x^{3} \right)

Finalmente, simplificamos para obtener el siguiente el resultado

f'(x) = - 18 x^{4} \textit{\Large e}^{x} - 72 x^{3} \textit{\Large e}^{x}

Ejemplo 12

Considerando la función f(x)=8 \textit{\Large e}^{x} \cdot \frac{6}{x} \cdot \left( - 5 \ln{\left(x \right)} \right), calcule su derivada aplicando la regla de derivación para el producto. Para esto, denotamos primero la derivada:

f'(x)=\left[ -8 \textit{\Large e}^{x} \cdot \frac{6}{x} \cdot \left( - 5 \ln{\left(x \right)} \right) \right]'

Debemos notar que esta función está definida como el producto de dos funciones, aplicamos la regla del producto y expresamos las derivadas

f'(x) =

\left( 8 \textit{\Large e}^{x} \right)' \cdot \left( \frac{6}{x} \right) \cdot \left( - 5 \ln{\left(x \right)} \right)
+ \left( 8 \textit{\Large e}^{x} \right) \cdot \left( \frac{6}{x} \right)' \cdot \left( - 5 \ln{\left(x \right)} \right)
+ \left( 8 \textit{\Large e}^{x} \right) \cdot \left( \frac{6}{x} \right) \cdot \left( - 5 \ln{\left(x \right)} \right)'

Consultamos la tabla de derivadas y calculamos las derivadas respectivas para obtener que

f'(x) =

\left( 8 \textit{\Large e}^{x} \right) \cdot \left( \frac{6}{x} \right) \cdot \left( - 5 \ln{\left(x \right)} \right)
+ \left( 8 \textit{\Large e}^{x} \right) \cdot \left( - \frac{6}{x^{2}} \right) \cdot \left( - 5 \ln{\left(x \right)} \right)
+ \left( 8 \textit{\Large e}^{x} \right) \cdot \left( \frac{6}{x} \right) \cdot \left( - \frac{5}{x} \right)

Finalmente, simplificamos para obtener el siguiente el resultado

f'(x) = - \frac{240 \textit{\Large e}^{x} \ln{\left(x \right)}}{x} + \frac{240 \textit{\Large e}^{x} \ln{\left(x \right)}}{x^{2}} - \frac{240 \textit{\Large e}^{x}}{x^{2}}


Nota: En este último caso hemos generalizado la regla del producto, y es que si tenemos tres funciones f(x), g(x) y h(x), es posible deducir que

\big( f(x) \cdot g(x) \cdot h(x) \big)' = f'(x) \cdot g(x) \cdot h(x) + f(x) \cdot g'(x) \cdot h(x) + f(x) \cdot g(x) \cdot h'(x)




Regla de la división

Si f(x) y g(x) son dos funciones, considerando el numerador y el denominador, definimos la derivada de la siguiente forma:

la derivada del numerador, por el denominador sin derivar, menos, el numerador sin derivar, por la derivada del denominador. Todo eso dividido entre el denominador elevado al cuadrado

\left( \dfrac{f(x)}{g(x)} \right)' = \dfrac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{\big( g(x) \big )^2}

Ejemplos

Ejemplo 13

Considerando la función f(x)= \frac{ 6 x }{ - 2 \ln{\left(x \right)} }, calcule su derivada aplicando la regla de derivación para la división. Para esto, denotamos primero la derivada:

f'(x)=\left[ \frac{ 6 x }{ - 2 \ln{\left(x \right)}} \right]'

Debemos notar que esta función está definida como la división dos funciones, aplicamos al regla de la división y expresamos las derivadas

f'(x)= \frac{\left( 6 x \right)' \cdot \left( - 2 \ln{\left(x \right)} \right) - \left( 6 x \right) \cdot \left( - 2 \ln{\left(x \right)} \right)'}{\left( - 2 \ln{\left(x \right)} \right)^2}

Consultamos la tabla de derivadas y calculamos las derivadas respectivas para obtener que

f'(x)= \frac{\left( 6 \right) \cdot \left( - 2 \ln{\left(x \right)} \right) - \left( 6 x \right) \cdot \left( - \frac{2}{x} \right)}{\left( - 2 \ln{\left(x \right)} \right)^2}

Finalmente, simplificamos para obtener el siguiente el resultado

f'(x) = - \frac{3}{\ln{\left(x \right)}} + \frac{3}{\ln{\left(x \right)}^{2}}

Ejemplo 14

Considerando la función f(x)= \frac{ \frac{7}{x} }{ \sqrt[6]{x} }, calcule su derivada aplicando la regla de derivación para la división. Para esto, denotamos primero la derivada:

f'(x)=\left[ \frac{ \frac{7}{x} }{ \sqrt[6]{x}} \right]'

Debemos notar que esta función está definida como la división dos funciones, aplicamos al regla de la división y expresamos las derivadas

f'(x)= \frac{\left( \frac{7}{x} \right)' \cdot \left( \sqrt[6]{x} \right) - \left( \frac{7}{x} \right) \cdot \left( \sqrt[6]{x} \right)'}{\left( \sqrt[6]{x} \right)^2}

Consultamos la tabla de derivadas y calculamos las derivadas respectivas para obtener que

f'(x)= \frac{\left( - \frac{7}{x^{2}} \right) \cdot \left( \sqrt[6]{x} \right) - \left( \frac{7}{x} \right) \cdot \left( \frac{1}{6 x^{\frac{5}{6}}} \right)}{\left( \sqrt[6]{x} \right)^2}

Finalmente, simplificamos para obtener el siguiente el resultado

f'(x) = - \frac{49}{6 x^{\frac{13}{6}}}

Ejemplo 15

Considerando la función f(x)= \frac{ - 8 x }{ - 5 \textit{\Large e}^{x} }, calcule su derivada aplicando la regla de derivación para la división. Para esto, denotamos primero la derivada:

f'(x)=\left[ \frac{ - 8 x }{ - 5 \textit{\Large e}^{x} } \right]'

Debemos notar que esta función está definida como la división dos funciones, aplicamos al regla de la división y expresamos las derivadas

f'(x)= \frac{\left( - 8 x \right)' \cdot \left( - 5 \textit{\Large e}^{x} \right) - \left( - 8 x \right) \cdot \left( - 5 \textit{\Large e}^{x} \right)'}{\left( - 5 \textit{\Large e}^{x} \right)^2}

Consultamos la tabla de derivadas y calculamos las derivadas respectivas para obtener que

f'(x)= \frac{\left( -8 \right) \cdot \left( - 5 \textit{\Large e}^{x} \right) - \left( - 8 x \right) \cdot \left( - 5 \textit{\Large e}^{x} \right)}{\left( - 5 \textit{\Large e}^{x} \right)^2}

Finalmente, simplificamos para obtener el siguiente el resultado

f'(x) = - \frac{8 x e^{- x}}{5} + \frac{8 e^{- x}}{5}

Ejemplo 16

Considerando la función f(x)= \frac{ \sqrt[10]{x} }{ - 3 x^{5} }, calcule su derivada aplicando la regla de derivación para la división. Para esto, denotamos primero la derivada:

f'(x)=\left[ \frac{ \sqrt[10]{x} }{ - 3 x^{5} } \right]'

Debemos notar que esta función está definida como la división dos funciones, aplicamos al regla de la división y expresamos las derivadas

f'(x)= \frac{\left( \sqrt[10]{x} \right)' \cdot \left( - 3 x^{5} \right) - \left( \sqrt[10]{x} \right) \cdot \left( - 3 x^{5} \right)'}{\left( - 3 x^{5} \right)^2}

Consultamos la tabla de derivadas y calculamos las derivadas respectivas para obtener que

f'(x)= \frac{\left( \frac{1}{10 x^{\frac{9}{10}}} \right) \cdot \left( - 3 x^{5} \right) - \left( \sqrt[10]{x} \right) \cdot \left( - 15 x^{4} \right)}{\left( - 3 x^{5} \right)^2}

Finalmente, simplificamos para obtener el siguiente el resultado

f'(x) = \frac{49}{30 x^{\frac{59}{10}}}


Derivadas | totumat.com

Derivadas

  1. La derivada de una función en un punto
    1. Un ejemplo particular
  2. La derivada de una función en cualquier punto
  3. Tabla de Derivadas Elementales

Consideremos una función lineal definida por una recta l_1, decimos que la pendiente de ésta determina la razón de cambio entre un punto y otro; y es que está definida como el cociente del cambio en el eje Y entre el cambio en el eje X. Formalmente, si (x_0,y_0) y (x_1,y_1) son dos puntos de esta recta entonces su razón de cambio desde x_0 hasta y_0 está definida por

m=\frac{y_1 - y_0}{x_1 - x_0}

De la forma en que hemos definido la razón de cambio para las funciones lineales, permite definir una forma general para la razón de cambio entre cualesquiera dos puntos pues siempre es la misma. Pero, ¿es posible definir una forma general para la razón de cambio para cualquier función?

También pudiera interesarte

La derivada de una función en un punto

Si consideramos cualquier función y=f(x), es posible estimar la razón de cambio de la misma forma que lo hemos hecho con las funciones lineales, es decir, si (x_0,y_0) y (x_1,y_1) son dos puntos de esta recta entonces su razón de cambio desde x_0 hasta y_0 está definida por

m=\frac{y_1 - y_0}{x_1 - x_0}

Gráficamente podemos notar que hay cierta holgura en nuestra estimación, así que podemos decir que no es precisa. Podemos mejorar esta estimación considerando un punto (x_2,y_2) más cercano a (x_0,y_0) y así, la razón de cambio está definida por

m=\frac{y_2 - y_0}{x_2 - x_0}

Incluso, si consideramos un punto (x_3,y_3) aún más cercano a (x_0,y_0), la estimación será más precisa y así, la razón de cambio está definida por

m=\frac{y_3 - y_0}{x_3 - x_0}

De esta forma podemos notar que mientras más cercano está el punto de (x_0,y_0), más precisa será nuestra estimación de la razón de cambio. Entonces, consideramos puntos (x,y) lo más cercanos posibles recurriendo al cálculo infinitesimal, es decir, al cálculo de límites.

Formalmente, si consideramos el límite cuando x tiende a x_0, entonces la razón de cambio puntual estará dada por \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}. A este límite lo llamamos derivada de la función f(x) en el punto x_0 y lo denotaremos de la siguiente forma

\displaystyle f'(x_0) = \lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}

Geométricamente, representa la pendiente de la recta tangente a la curva definida por f(x) en el punto (x_0,f(x_0)), es decir, la recta que corta a la curva f(x) únicamente en el punto (x_0,f(x_0)) de la siguiente forma:



Un ejemplo particular

Veamos un ejemplo particular, consideremos la función cuadrática f(x)=x^2 y suponga que queremos calcular su derivada en en x_0 = 2. Entonces, su derivada está definida por el siguiente límite:

\displaystyle f'(2) = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2}

\displaystyle = \lim_{x \to 2} \frac{x^2 - 2^2}{x - 2}

\displaystyle = \lim_{x \to 2} \frac{x^2 - 4}{x - 2}

\displaystyle = \frac{4-4}{2-2}

\displaystyle = \frac{0}{0}

Este límite presenta una indeterminación de la forma \frac{0}{0}, así que procedemos a determinarlo considerando que el numerador es una diferencia de cuadrados,

\displaystyle \lim_{x \to 2} \frac{x^2 - 2^2}{x - 2}

\displaystyle = \lim_{x \to 2} \frac{(x-2)(x+2)}{x - 2}

\displaystyle = \lim_{x \to 2} x + 2

\displaystyle = 2+2

\displaystyle = 4

Entonces la razón de cambio puntual de la función cuadrática en el punto x_0 = 2 es igual a 4, geométricamente estamos diciendo que la pendiente de la recta tangente a la curva f(x)=x^2 en el punto (2,4) es igual a 4.

La derivada de una función en cualquier punto

Suponga ahora que queremos calcular la derivada en los puntos x_0 = 3 y x_0 = -5, entonces, ¿debemos calcular el límite cada vez? No necesariamente, pues podemos determinar una fórmula general para calcular la derivada de la función cuadrática en cualquier punto x. Para esto sigamos algunos pasos de forma muy cuidadosa.

Consideremos, una variable auxiliar definida como h=x-x_0, esta tenderá a cero cuando x tiende a x_0, y además, si despejamos x, obtenemos lo siguiente:

x = x_0+ h

Entonces, podemos reescribir la derivada de la función f(x) en el punto x_0 de la forma

\displaystyle f'(x_0) = \lim_{h \to 0} \frac{f(x_0+h)-f(x_0)}{h}

Entonces, evaluamos la función en x_0 + h y x_0 para luego aplicar producto notable y obtener que

\displaystyle \lim_{h \to 0} \frac{(x_0 + h)^2 - (x_0)^2}{h}

\displaystyle = \lim_{h \to 0} \frac{x_0^2 + 2 x_0 h + h^2 - x_0^2}{h}

\displaystyle = \lim_{h \to 0} \frac{2 x_0 h + h^2 }{h}

Sacamos h como un factor común en el numerador, posteriormente lo simplificamos tomando en cuenta el h que está en el numerador y evaluamos el límite.

\lim_{h \to 0} \frac{(2 x_0 + h) \cdot h}{h}

\displaystyle = \lim_{h \to 0} 2 x_0 + h

\displaystyle = 2 x_0 + 0

\displaystyle = 2 x_0

Considerando que x_0 es cualquier elemento en el dominio de la función cuadrática, podemos establecer una fórmula general para su derivada, es decir, si f(x) = x^2 entonces su derivada en cualquier punto x de su dominio está definida como

f'(x) = 2x

De modo que la derivada de la función f(x)=x^2 en los puntos x_0 = 3 y x_0 = -5 es f'(3)=2(3)=6 y f'(-5)=2(-5)=-10, respectivamente.



Es posible establecer fórmulas generales para la derivada de todas las funciones elementales de la misma forma que lo hemos hecho con la función cuadrática y aunque no desarrollaremos los cálculos de forma exhaustiva, podemos hacer una lista de estas derivadas, conocida como la Tabla de Derivadas Elementales

Tabla de Derivadas Elementales

f(x)f'(x)
c0
x1
x^22x
x^33x^2
x^nn \cdot x^n
\sqrt{x}\dfrac{1}{2\sqrt{x}}
\dfrac{1}{x}-\dfrac{1}{x^2}
f(x)f'(x)
a^xa^x \cdot \ln(x)
\textit{\large e}^x\textit{\large e}^x
\log_a(x)\dfrac{1}{x \cdot \ln(x)}
\ln(x)\dfrac{1}{x}
f(x)f'(x)
sen(x)cos(x)
cos(x)-sen(x)
tan(x)\dfrac{1}{cos^2(x)}

El trinomio cuadrado perfecto

De los productos notables, que son casos particulares de la propiedad distributiva, el más importante es el que nos da como resultado el trinomio cuadrado perfecto y establece que, si a y b son dos números reales, el cuadrado de la suma de ellos dos es igual al primero al cuadrado más dos veces el producto del primero por el segundo más el segundo al cuadrado, es decir,

El trinomio cuadrado perfecto | totumat.com

También pudiera interesarte

Esta igualdad se puede deducir efectuando la propiedad distributiva cuando multiplicamos la suma de dos números por esa misma suma, veamos entonces,

El trinomio cuadrado perfecto | totumat.com

De igual forma, si a y b son dos números reales, el cuadrado de la resta entre ellos dos es igual al primero al cuadrado menos dos veces el producto del primero por el segundo más el segundo al cuadrado, es decir,

El trinomio cuadrado perfecto | totumat.com

Esta igualdad se puede deducir efectuando la propiedad distributiva cuando multiplicamos la resta de dos números por esa misma resta, veamos entonces,

El trinomio cuadrado perfecto | totumat.com

Este tipo de expresiones se encuentra a menudo en el desarrollo las operaciones algebraicas pues no siempre podremos efectuar la suma que se encuentra dentro de los paréntesis, veamos en los siguientes ejemplos como aplicar esta operación:

Anuncios

Ejemplos

Ejemplo 1

Aplique el producto notable para expandir la expresión (3 + 2)^2. Sumamos los dos elementos dentro del paréntesis y elevamos al cuadrado de la siguiente manera:

(3 + 2)^2
\ =\ 5^2
\ =\ 25

Ejemplo 2

Aplique el producto notable para expandir la expresión (3 + \sqrt{2})^2. Notemos que uno de los sumandos involucrados es la raíz cuadrada de dos, por lo tanto no se puede sumar con tres.

(3 + \sqrt{2})^2
\ =\ 3^2 + 2(3)(\sqrt{2}) + (\sqrt{2})^2
\ =\ 9 + 6\sqrt{2} + 2
\ =\ 11+6\sqrt{2}

Ejemplo 3

Aplique el producto notable para expandir la expresión (\sqrt[3]{6} - 4)^2. Notemos que uno de los sumandos involucrados es la raíz cúbica de seis, por lo tanto no se puede restar con cuatro.

(\sqrt[3]{6} - 4)^2
\ =\ (\sqrt[3]{6})^2 -2(\sqrt[3]{6})(4) + 4^2
\ =\ (\sqrt[3]{6})^2 -8\sqrt[3]{6} +16

Ejemplo 4

Aplique el producto notable para expandir la expresión (x+7)^2. Notemos que uno de los sumandos involucrados es una incógnita, por lo tanto no se puede sumar con siete.

(x+7)^2
\ =\ x^2 + 2(x)(7) + 7^2
\ =\ x^2 +14x + 49

Anuncios

Ejemplo 5

Aplique el producto notable para expandir la expresión (2x-8)^2. Notemos que uno de los sumandos involucrados es una incógnita multiplicada por dos, por lo tanto no se puede restar con ocho.

(2x-8)^2
\ =\ (2x)^2 - 2(2x)(8) + 8^2
\ =\ 4x^2 - 32x + 64

Ejemplo 6

Aplique el producto notable para expandir la expresión (x^2 + x^5)^2. Notemos que uno de los sumandos involucrados es equis al cuadrado y el otro es equis elevado a la cinco, por lo tanto no se pueden sumar.

(x^2 + x^5)^2
\ =\ (x^2)^2 + 2(x^2)(x^5) + (x^5)^2
\ =\ x^4 + 2x^7 + x^{10}


Indeterminación uno a la infinito 1^∞

Hasta ahora hemos estudiado el límite de las operaciones básicas entre funciones, sin embargo, si consideramos dos funciones f(x) y g(x), entonces la función f(x)^{g(x)} cuando x tiende a infinito debe calcularse tomando tomando en cuenta que

\lim_{x \to \infty} f(x)^{g(x)} = 1^{\infty} está indeterminado.

La técnica para determinar este tipo de límites parte de la definición del número \textit{\large e} y es que podemos notar que si hacemos una simple sustitución en el siguiente límite, podemos notar que éste presenta una indeterminación

\lim_{x \to \infty} \left( 1 + \frac{1}{x}\right)^x = \left( 1 + \frac{1}{\infty}\right)^{\infty} = (1 + 0)^{\infty} = 1^\infty

Afortunadamente, sabemos que éste límite define justamente al número \textit{\large e}, entonces

\lim_{x \to \infty} \left( 1 + \frac{1}{x}\right)^x = \textit{\Large e}

Esta fórmula se puede generalizar aún más, pues si consideramos una función f(x) que tiende a infinito cuando x tiende a infinito, entonces

\lim_{x \to \infty} \left( 1 + \frac{1}{f(x)}\right)^{f(x)} = \textit{\Large e}

De esta forma, al toparnos con la indeterminación 1^{\infty} puede ser conveniente reescribir la expresión que define la función para obtener el número. Veamos en los siguientes ejemplos como determinar este tipo de límites.

Anuncios

Ejemplos

Ejemplo 1

Si consideramos \lim_{x \to \infty} \left( 1 - \frac{1}{x}\right)^{x} = 1^{\infty}, este límite presenta una indeterminación. Notamos que este límite es levemente diferente al límite que define el número \textit{\large e}, así que tomando en cuenta la propiedad de las potencias \left(a^b\right)^c = a^{bc} entonces podemos reescribir el límite para encontrar la definición del número \textit{\large e} de la siguiente forma

\lim_{x \to \infty} \left( 1 - \frac{1}{x}\right)^{x} = \lim_{x \to \infty} \left[ \left( 1 + \frac{1}{-x}\right)^{-x} \right]^{-1}

De esta forma, notamos que la expresión que está dentro de los corchetes es la definición del número \textit{\large e}, entonces al calcular el límite obtenemos

\textit{\large e}^{-1} = \frac{1}{\textit{\large e}}

Por lo tanto, concluimos que \lim_{x \to \infty} \left( 1 - \frac{1}{x}\right)^{x} = \frac{1}{\textit{\large e}}


De forma general, si consideramos una función f(x) que tiende a infinito cuando x tiende a infinito, entonces

\lim_{x \to \infty} \left( 1 - \frac{1}{f(x)}\right)^{f(x)} = \frac{1}{\textit{\Large e}}


Ejemplo 2

Si consideramos \lim_{x \to \infty} \left( 1 + \frac{1}{x}\right)^{2x} = 1^{\infty}, este límite presenta una indeterminación. Podemos reescribir de la siguiente forma

\lim_{x \to \infty} \left( 1 + \frac{1}{x}\right)^{2x} = \lim_{x \to \infty} \left[ \left( 1 + \frac{1}{x}\right)^x \right]^2

De esta forma, notamos que la expresión que está dentro de los corchetes es la definición del número \textit{\large e}, entonces al calcular el límite obtenemos

\textit{\large e}^2

Por lo tanto, concluimos que \lim_{x \to \infty} \left( 1 + \frac{1}{x}\right)^{x} = \textit{\large e}^2

Ejemplo 3

Si consideramos \lim_{x \to \infty} \left( 1 - \frac{3}{x}\right)^{x} = 1^{\infty}, este límite presenta una indeterminación. Reescribimos el límite de la siguiente forma

\lim_{x \to \infty} \left( 1 - \frac{3}{x}\right)^{x} = \lim_{x \to \infty} \left[ \left( 1 - \frac{ \ 1 \ }{\frac{x}{3}}\right)^{\frac{x}{3}} \right]^{3}

De esta forma, notamos que la expresión que está dentro de los corchetes es la definición del número \textit{\large e}, entonces al calcular el límite obtenemos

\left[ \textit{\large e}^{-1} \right]^3 = \frac{1}{\textit{\large e}^3}

Por lo tanto, concluimos que \lim_{x \to \infty} \left( 1 - \frac{3}{x}\right)^{x} = \frac{1}{\textit{\large e}^3}

Ejemplo 4

Si consideramos \lim_{x \to \infty} \left(\frac{x+1}{x}\right)^{x} = 1^{\infty}, este límite presenta una indeterminación. Reescribimos el límite de la siguiente forma

\lim_{x \to \infty} \left(\frac{x+1}{x}\right)^{x} = \lim_{x \to \infty} \left(\frac{x}{x} + \frac{1}{x}\right)^{x} =\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^{x} = \textit{\large e}


De forma general, si consideramos dos funciones f(x) y g(x) tales que \frac{f(x)}{g(x)} tiende a infinito cuando x tiende a infinito, entonces

\lim_{x \to \infty} \left( 1 + \frac{ \ 1 \ }{\frac{f(x)}{g(x)}}\right)^{\frac{f(x)}{g(x)}} = \lim_{x \to \infty} \left( 1 + \frac{g(x)}{f(x)}\right)^{\frac{f(x)}{g(x)}} = \textit{\Large e}


Ejemplo 5

Si consideramos \lim_{x \to \infty} \left(\frac{x+1}{x-1}\right)^{x} = 1^{\infty}, este límite presenta una indeterminación. Notamos a diferencia del ejemplo anterior, la solución no es tan simple como separar las sumas de fracciones. Así que reescribimos sumando y restando uno en el límite de la siguiente forma

\lim_{x \to \infty} \left(\frac{x+1}{x-1}\right)^{x} = \lim_{x \to \infty} \left(1 - 1 + \frac{x+1}{x-1}\right)^{x} = \lim_{x \to \infty} \left(1 + \frac{x+1}{x-1} -1 \right)^{x}

Efectuamos la suma de fracciones para obtener

\lim_{x \to \infty} \left(1 + \frac{(x+1) - (x-1)}{x-1}\right)^{x} = \lim_{x \to \infty} \left(1 + \frac{2}{x-1}\right)^{x}

Ahora multiplicamos y dividimos en el exponente por los factores 2 y x-1 para luego conservar la expresión de nuestro interés,

\lim_{x \to \infty} \left(1 + \frac{2}{x-1}\right)^{x \cdot \frac{2}{2} \cdot \frac{x-1}{x-1}} = \lim_{x \to \infty} \left(1 + \frac{2}{x-1}\right)^{\frac{x-1}{2} \cdot \frac{2}{x-1} \cdot x}

Aplicamos entonces las propiedades de la potencia de la siguiente manera y obtenemos

\lim_{x \to \infty} \left[ \left(1 + \frac{2}{x-1}\right)^{\frac{x-1}{2}} \right]^{\frac{2x}{x-1}}

Notando que la expresión que está dentro de los corchetes es la definición del número \textit{\large e} y considerando que en el exponente el polinomio en el numerador y el polinomio en el denominador tienen el mismo grado, el límite será igual al cociente entre sus coeficientes principales, entonces al calcular el límite el resultado será

\textit{\Large e}^{\lim_{x \to \infty} \frac{2x}{x-1}} = \textit{\Large e}^2

Por lo tanto, concluimos que \lim_{x \to \infty} \left(\frac{x+1}{x-1}\right)^{x} = \textit{\large e}^2


Anuncios

Una fórmula general

Este tipo de límites no presentan mayor complicación al calcularlos y aunque esta técnica es bastante amplia, encontraremos ocasiones en las que podemos recurrir a métodos más sofisticados pues la técnica que hemos usado hasta ahora puede resultar engorrosa. Veamos entonces, la siguiente serie de igualdades para determinar una fórmula que nos permita calcular este tipo de límites.

\lim_{x \to \infty} f(x)^{g(x)}

= \lim_{x \to \infty} \left( 1 + f(x) -1 \right)^{g(x)}

= \lim_{x \to \infty} \left( 1 + f(x) -1 \right)^{g(x) \cdot \frac{f(x) -1}{f(x) -1}}

= \lim_{x \to \infty} \left( 1 + f(x) -1 \right)^{\frac{1}{f(x) -1} \cdot g(x) (f(x) -1)}

= \lim_{x \to \infty} \left[ \left( 1 + f(x) -1 \right)^{\frac{1}{f(x) -1}} \right]^{g(x) (f(x) -1)}

= \textit{\large e}^{\lim_{x \to \infty} g(x) (f(x) -1)}

Por lo tanto, tenemos que

\lim_{x \to \infty} f(x)^{g(x)} = \textit{\huge e}^{\lim_{x \to \infty} g(x) (f(x) -1)}

Veamos en los siguientes ejemplos como determinar este tipo de límites.

Ejemplo 6

Si consideramos \lim_{x \to \infty} \left( \frac{x^2 + 3}{x^2 - x} \right)^{5x + 2} = 1^{\infty}, este límite presenta una indeterminación. Entonces, aplicando la fórmula, tenemos que

\lim_{x \to \infty} \left( \frac{x^2 + 3}{x^2 - x} \right)^{5x + 2} = \textit{\huge e}^{\lim_{x \to \infty} (5x+2) \left(\frac{x^2 + 3}{x^2 - x} - 1 \right) }

Entonces, basta con determinar el límite \lim_{x \to \infty} (5x+2) \left(\frac{x^2 + 3}{x^2 - x} - 1 \right) = 0 \cdot \infty, para esto efectuamos la suma de fracciones para obtener

\lim_{x \to \infty} (5x+2) \left(\frac{x^2 + 3- (x^2 - x)}{x^2 - x} \right) = \lim_{x \to \infty} (5x+2) \left(\frac{3+x}{x^2 - x} \right)

Posteriormente efectuamos el producto entre los numeradores aplicando la propiedad distributiva, y obtenemos

\lim_{x \to \infty} \frac{15x + 5x^2 + 6 +2x}{x^2 - x} = \lim_{x \to \infty} \frac{5x^2 +17x +6}{x^2 - x}

Y considerando que el polinomio en el numerador y el polinomio en el denominador tienen el mismo grado, el límite será igual al cociente entre sus coeficientes principales, es decir, \lim_{x \to \infty} \frac{5x^2 +17x +6}{x^2 - x} = 5. Por lo tanto, concluimos que

\lim_{x \to \infty} \left( \frac{x^2 + 3}{x^2 - x} \right)^{5x + 2} = \textit{\huge e}^{5}


Indeterminación cero por infinito 0*∞

Si f(x) y g(x) son dos funciones cuyos límites tienden a infinito y a cero, respectivamente cuando x tiende al infinito, entonces el límite del producto de estas dos funciones presenta una indeterminación. La forma en que se determinan este tipo de límites consiste en reescribir la expresión para obtener una indeterminación de la forma \frac{\infty}{\infty} y usar las técnicas usadas para estos casos. Veamos en los siguientes ejemplos como determinar este tipo de límites

Ejemplos

Ejemplo 1

Si consideramos \lim_{x \to \infty} \left(\frac{1}{\sqrt{4x^2 - 7}} \right) 6x = 0 \cdot \infty, este presenta una indeterminación. Multiplicamos el producto entre las fracciones y posteriormente aplicamos la técnica que hemos visto anteriormente

\lim_{x \to \infty} \frac{6x}{\sqrt{4x^2 - 7}} = \lim_{x \to \infty} \frac{6x}{\sqrt{4x^2 - 7}} = \lim_{x \to \infty} \frac{\frac{6x}{x}}{\sqrt{4\frac{x^2}{x^2} -\frac{7}{x}}} = \lim_{x \to \infty} \frac{6}{\sqrt{4 -\frac{7}{x^2}}}

Y al evaluar el límite obtenemos

\frac{6}{\sqrt{4-0}} = \frac{6}{\sqrt{4}} = \frac{6}{2} = 3

Por lo tanto, concluimos que \lim_{x \to \infty} \left(\frac{1}{\sqrt{4x^2 - 7}} \right) 6x = 3

Ejemplo 2

Si consideramos \lim_{x \to \infty} (5x+2) \left(\frac{x^2 + 3}{x^2 - x} - 1 \right) = 0 \cdot \infty, este presenta una indeterminación. Efectuamos la suma de fracciones para obtener

\lim_{x \to \infty} (5x+2) \left(\frac{x^2 + 3- (x^2 - x)}{x^2 - x} \right) = \lim_{x \to \infty} (5x+2) \left(\frac{3+x}{x^2 - x} \right)

Posteriormente efectuamos el producto entre los numeradores aplicando la propiedad distributiva, y obtenemos

\lim_{x \to \infty} \frac{15x + 5x^2 + 6 +2x}{x^2 - x} = \lim_{x \to \infty} \frac{5x^2 +17x +6}{x^2 - x}

Y considerando que el polinomio en el numerador y el polinomio en el denominador tienen el mismo grado, el límite será igual al cociente entre sus coeficientes principales, por lo tanto, concluimos que \lim_{x \to \infty} \frac{5x^2 +17x +6}{x^2 - x} = 15