Ecuaciones Diferenciales Ordinarias lineales con coeficientes constantes (1 de 2)

Los métodos para calcular al solución ecuaciones diferenciales ordinarias de orden superior dependen de la forma en que la ecuación esté expresada, considerando el caso lineal, es posible particularizarlo aún más, pues si consideremos una ecuación diferencial de la forma

a_n(x) y^{(n)} + \ldots + a_1(x) y' + a_0(x) y = g(x)

Las funciones a_0(x), a_1(x), \ldots, a_n(x) que definen los coeficientes de la ecuación, pueden considerarse como funciones constantes, de forma que la ecuación diferencial queda expresada como

a_n y^{(n)} + \ldots + a_1 y' + a_0 y = g(x)

Donde a_0, a_1, \ldots, a_n son números reales.

Más aún, será de vital importancia clasificar estas ecuaciones dependiendo del valor de g(x). Diremos que una ecuación de este tipo es homogénea si g(x)=0, y durante esta sección, este es el caso que desarrollaremos.

Anuncios

Ecuaciones Diferenciales Ordinarias lineales homogéneas con coeficientes constantes

Consideremos de forma particular, una ecuación diferencial ordinaria lineal con coeficientes constantes de segundo orden, de la cual no conocemos ninguna solución particular, expresada de la siguiente forma:

ay'' + by' + cy = 0

Notemos que al ser todos sus coeficientes constantes, entonces todos sus coeficientes son funciones continuas en cualquier intervalo I, por lo tanto podemos garantizar que existe una solución.

La ecuación que hemos considerado se puede reescribir como y'' = \alpha y' + \beta y, esta expresión sugiere que la segunda derivada de la solución que estamos buscando es una combinación lineal de la primera y segunda derivada. Podemos notar que una función de la forma y=\textit{\Large e}^{mx} cumple con esta propiedad pues

y=\textit{\Large e}^{mx}

y'=m\textit{\Large e}^{mx}

y''=m^2\textit{\Large e}^{mx}

Entonces, sustituyendo esta función y sus derivadas en la ecuación que hemos planteado, tenemos que

am^2\textit{\Large e}^{mx} + bm\textit{\Large e}^{mx} + c\textit{\Large e}^{mx} = 0

Podemos factorizar esta expresión, pues si sacamos \textit{\Large e}^{mx} como un factor obtenemos

\textit{\Large e}^{mx} ( am^2 + bm + c) = 0

Tomando en cuenta que la función exponencial siempre es distinta de cero, tenemos que \textit{\Large e}^{mx} \neq 0, entonces para que esta igualdad se satisfaga, necesariamente el otro factor involucrado debe ser igual a cero, es decir,

am^2 + bm + c = 0

Esta última es una ecuación cuadrática y en este caso la llamamos ecuación auxiliar. Nuestro propósito será el calcular el valor m que la satisface pues de esta forma hallamos la función y, para esto usamos el método del discriminante del cual obtenemos dos valores.

m_1 = \frac{-b + \sqrt{b^2-4ac}}{2a} \text{ y } m_2 = \frac{-b - \sqrt{b^2-4ac}}{2a}

A partir de aquí debemos tener tres consideraciones antes de que expresar nuestra solución:

Anuncios

Discriminante positivo

Si b^2-4ac > 0, entonces m_1 y m_2 son dos números reales distintos, obtenemos dos soluciones particulares y_1 = \textit{\Large e}^{m_1 x} y y_2 = \textit{\Large e}^{m_2 x} por lo que la solución general está definida como

y = c_1 \textit{\Large e}^{m_1 x} + c_2 \textit{\Large e}^{m_2 x}

Discriminante igual a cero

Si b^2-4ac = 0, entonces m_1 y m_2 son dos números reales exactamente iguales \frac{-b}{2a}, por lo que la una solución particular está definida como y_1=\textit{\Large e}^{m_1x}, sin embargo, ¿cómo determinamos la otra solución particular?

Considerando la ecuación ay'' + by' + cy = 0, entonces estandarizamos la ecuación

y'' + \frac{b}{a}y' + \frac{c}{a}y = 0

Y recordemos que si conocemos una solución particular y_1 de una ecuación, la otra solución particular y_2 se puede calcular aplicando la siguiente fórmula

y_2(x) \ = \ y_1(x) \int \frac{\textit{\Huge e}^{\tiny - \int P dx}}{ \left( y_1(x) \right)^2} dx

= \ \textit{\Large e}^{m_1 x} \int \frac{\textit{\Huge e}^{\tiny - \int \frac{b}{a} dx}}{ \left( \textit{\Large e}^{m_1 x} \right)^2} dx

= \ \textit{\Large e}^{m_1 x} \int \frac{\textit{\Huge e}^{\tiny - \int \frac{b}{a} dx}}{ \left( \textit{\Large e}^{\frac{-b}{2a} x} \right)^2} dx

= \ \textit{\Large e}^{m_1 x} \int \frac{\textit{\Large e}^{\tiny - \frac{b}{a} x}}{ \textit{\Large e}^{- \frac{b}{a} x} } dx

= \ \textit{\Large e}^{m_1 x} \int dx

= \ x \textit{\Large e}^{m_1 x}

Por lo tanto, la solución general está definida como

y = c_1 \textit{\Large e}^{m_1x} + c_2 x \textit{\Large e}^{m_1x}

Discriminante negativo

Si b^2-4ac < 0, entonces m_1 y m_2 son dos números complejos distintos de la forma m_1=\alpha + i\beta y m_2=\alpha-i\beta donde \alpha,\beta<0 e i^2=-1. Formalmente no hay diferencia entre este y el primer caso, por lo que la solución será

y = c_1 \textit{\Large e}^{(\alpha + i\beta)x} + c_2 \textit{\Large e}^{(\alpha + i\beta)x}

Sin embargo, será necesario reescribir esta función en términos de números reales, por esta razón recurrimos a una serie de artilugios matemáticos que al final nos darán como resultado

y = c_1 \textit{\Large e}^{\alpha x} cos(\beta x) + c_2 \textit{\Large e}^{\alpha x} sen(\beta x)

Anuncios

Ejemplos

Ejemplo 1

Calcule la solución de la siguiente ecuación diferencial ordinaria lineal homogénea con coeficientes constantes

2y'' - 5y' -3y = 0

Empezamos escribiendo la ecuación auxiliar correspondiente a esta ecuación diferencial

2m^2 - 5m - 3 = 0

Y aplicando el método del discriminante obtenemos que

m = \frac{-(-5) \pm \sqrt{(-5)^2-4(2)(-3)}}{2(2)}

Por lo tanto, m_1=\frac{1}{2} y m_2=3 son las raíces de este polinomio y así, la solución general es esta ecuación diferencial viene dada por

y = c_1 \textit{\Large e}^{-\frac{1}{2}x} + c_2 \textit{\Large e}^{3x}

Ejemplo 2

Calcule la solución de la siguiente ecuación diferencial ordinaria lineal homogénea con coeficientes constantes

y'' - 10y' + 25y = 0

Empezamos escribiendo la ecuación auxiliar correspondiente a esta ecuación diferencial

m^2 - 10m - 25 = 0

Y aplicando el método del discriminante obtenemos que

m = \frac{-(-10) \pm \sqrt{(-10)^2-4(1)(-25)}}{2(1)}

Por lo tanto, m_1=5 y m_2=5 son las raíces de este polinomio y notando que ambas son la misma raíz, decimos que esta tiene multiplicidad igual a 2, por lo tanto la solución general es esta ecuación diferencial viene dada por

y = c_1 \textit{\Large e}^{5x} + c_2 x \textit{\Large e}^{5x}

Ejemplo 3

Calcule la solución de la siguiente ecuación diferencial ordinaria lineal homogénea con coeficientes constantes

y'' + 4y' + 7y = 0

Empezamos escribiendo la ecuación auxiliar correspondiente a esta ecuación diferencial

m^2 + 4m + 7 = 0

Y aplicando el método del discriminante obtenemos que

m = \frac{-(4) \pm \sqrt{(4)^2-4(1)(7)}}{2(1)} = \frac{-4 \pm \sqrt{-12}}{2} = \frac{-4 \pm 2\sqrt{3}i}{2} = -2 \pm \sqrt{3}i

Por lo tanto, m_1= -2 + \sqrt{3}i latex y m_2= -2 - \sqrt{3}i son las raíces de este polinomio y así, la solución general es esta ecuación diferencial viene dada por

y = c_1 \textit{\Large e}^{-2x} cos(\sqrt{3}x) + c_2 \textit{\Large e}^{-2x} cos(\sqrt{3}x)


Anuncios

Habiendo estudiado el caso para ecuaciones diferenciales de segundo orden, veremos ahora que el caso para ecuaciones de mayor orden no será muy diferente pues simplemente generalizamos las ideas. Formalmente, al considerar una ecuación de la forma

a_{n} y^{(n)} + a_{n-1} y^{(n-1)} + \ldots + a_{1} y' + a_0 y = 0

Nuevamente consideraremos una función de la forma y=\textit{\Large e}^{mx} y al sustituirla en la ecuación, hacemos un desarrollo análogo al caso de segundo orden para obtener la siguiente ecuación

a_n m^n + a_{n-1} m^{n-1} + \ldots + a_1 m + a_0

Que nuevamente llamaremos ecuación auxiliar y, si esta tiene n soluciones distintas, entonces la solución general de la ecuación diferencial viene dada por

y = c_1 \textit{\Large e}^{m_1 x} + c_2 \textit{\Large e}^{m_2 x} + \ldots + c_n \textit{\Large e}^{m_n x}

Sin embargo, cuando no todas las n soluciones son iguales, debemos “combinar” los otros dos casos, de forma que si m_p tiene multiplicidad k, es decir, es una solución que se repite k veces, entonces la expresión

c_{p_1} \textit{\Large e}^{m_p x} + c_{p_2} x \textit{\Large e}^{m_p x} + c_{p_3} x^{2} \textit{\Large e}^{m_p x} + \ldots + c_{p_k} x^{k-1} \textit{\Large e}^{m_p x}

Se encuentra como una combinación lineal que forma parte de la solución.

Anuncios

Ejemplos

Ejemplo 4

Calcule la solución de la siguiente ecuación diferencial ordinaria lineal homogénea con coeficientes constantes

y''' + 3y'' - 4y = 0

Empezamos escribiendo la ecuación auxiliar correspondiente a esta ecuación diferencial

m^3 + 3m^2 - 4 = 0

Y aplicando el Método de Ruffini podemos hallar las raíces de este polinomio,

De esta forma, tenemos que m_1=1, m_2=-2 y m_3=-2. Notamos que -2 es una raíz multiplicidad dos, pues se repite dos veces. Así, la solución general es esta ecuación diferencial viene dada por

y = c_{1} \textit{\Large e}^{x} + c_{2} \textit{\Large e}^{-2x} + c_{3} x \textit{\Large e}^{-2x}

Ejemplo 5

Supongamos ahora que al plantear una ecuación diferencial ordinaria lineal homogénea con coeficientes constantes, su ecuación auxiliar se factoriza de la siguiente forma

(m-3)^2(m+7)^3(m-5)(m-(4+i9))(m-(4-i9))

Entonces, tomando en cuenta la multiplicidad de algunas raíces y que otras son complejas, la solución general es esta ecuación diferencial viene dada por

y =

c_1 \textit{\Large e}^{3x} + c_2 x \textit{\Large e}^{3x}

+ c_3 \textit{\Large e}^{-7x} + c_4 x \textit{\Large e}^{-7x} + c_5 x^2 \textit{\Large e}^{-7x}

+ c_6 \textit{\Large e}^{5x}

+ c_7 \textit{\Large e}^{4x} cos(9x) + c_8 \textit{\Large e}^{4x} sen(9x)


Ecuaciones Diferenciales Ordinarias Lineales Homogéneas con una solución conocida

Veamos ahora el desarrollo de un método que nos permitirá reducir el orden de una ecuación diferencial ordinaria lineal homogénea una vez que hemos encontrado una de sus soluciones.

Diremos que una ecuación diferencial ordinaria lineal está expresada en su forma estándar si el coeficiente que multiplica a la derivada de mayor orden involucrada en la ecuación es exactamente igual a uno. Entonces, si consideramos una ecuación diferencial ordinaria lineal homogénea de segundo orden, diremos que esta está estandarizada si se encuentra expresada de la siguiente forma:

y'' + P(x) y' + Q(x) y = 0

Donde P(x) y Q(x) son funciones continuas en un intervalo I, pues de esta forma podemos garantizar que existe un conjunto fundamental de soluciones de esta ecuación en el intervalo I. Supongamos que y_1(x) es en efecto una solución conocida y que y_1(x) \neq 0 para todo x en el intervalo I.

Anuncios

Partiremos del hecho de que al considerar una ecuación diferencial ordinaria lineal homogénea de segundo orden, existirá un conjunto fundamental de soluciones que consta de exactamente dos soluciones para esta ecuación.

Formalmente, si consideramos y_1 y y_2, dos soluciones linealmente independientes de una ecuación diferencial ordinaria homogénea de orden dos en un intervalo I, el principio de superposición para ecuaciones homogéneas establece que cualquier otra solución será combinación lineal de éstas, entonces la solución general estará definida en un intervalo I de la siguiente forma

y = c_1 y_1 + c_2 y_2

Nuestro propósito es encontrar una segunda solución y_2(x) tal que y_1(x) y y_2(x) son linealmente independientes, es decir, tal que y_2(x) \neq c_1 \cdot y_1(). Consideramos entonces, una función auxiliar u(x) tal que y_2(x) = u(x) \cdot y_1(x).

La función y_2 debería satisfacer la ecuación y'' + P(x) y' + Q(x) y = 0, entonces, debemos calcular la primera y la segunda derivada de y_2 para posteriormente sustituirla en la ecuación.

y_2 = u \cdot y

y_2' = u \cdot y'_1 + y_1 \cdot u'

y_2'' = u \cdot y''_1 + 2 \cdot y'_1 \cdot u' + y_1 \cdot u''

Entonces al sustituir las funciones y_2, y_2' y y_2'' en la ecuación estandarizada, obtenemos

(u y''_1 + 2y'_1 u' + y_1 u'') + P (uy'_1 + y_1u') + Q (uy_1) = 0

Expandimos las expresiones distribuyendo P y posteriormente agrupamos los elementos que multiplican a u, u' y u''

u y''_1 + 2y'_1 u' + y_1 u'' + P uy'_1 + P y_1u' + Q uy_1 = 0

\Rightarrow \; y_1 u'' + 2y'_1 u' + P y_1u' + u y''_1 + P uy'_1 + Q uy_1 = 0

\Rightarrow \; y_1 u'' + (2y'_1 + P y_1 ) u' + (y''_1 + Py'_1 + Qy_1)u = 0

Debemos nota que al ser y_1 una solución de la ecuación, entonces y''_1 + Py'_1 + Qy_1 = 0, por lo tanto, tenemos que

y_1 u'' + (2y'_1 + P y_1 ) u' + (0)u = 0

\Rightarrow \; y_1 u'' + (2y'_1 + P y_1 ) u' = 0

Anuncios

Notemos que esta última ecuación involucra sólo la primera y segunda derivada de la variable u, entonces, si recurrimos a una nueva variable auxiliar w(x)=u'(x), podemos reducir el orden la ecuación diferencial como sigue

y_1 w' + (2y'_1 + P y_1 ) w = 0

Esta ecuación es precisamente una ecuación diferencial ordinaria de primer orden con variables separables, entonces podemos calcular su solución de la siguiente manera

y_1 w' + (2y'_1 + P y_1 ) w = 0

\Rightarrow \; y_1 w' = - (2y'_1 + P y_1 ) w

\Rightarrow \; \frac{w'}{w} = \frac{- (2y'_1 + P y_1 )}{y_1}

\Rightarrow \; \int \frac{w'}{w} = \int \frac{- (2y'_1 + P y_1 )}{y_1} dx

\Rightarrow \; \int \frac{w'}{w} dx = - \int \left( \frac{2y'_1}{y_1} + \frac{P y_1 }{y_1} \right) dx

\Rightarrow \; \ln(w) = - 2 \ln(y_1) - \int P dx + C

\Rightarrow \; \ln(w) + 2 \ln(y_1) = - \int P dx + C

\Rightarrow \; \ln(w) + \ln(y_1^2) = - \int P dx + C

\Rightarrow \; \ln(w y_1^2) = - \int P dx + C

\Rightarrow \; \textit{\Large e}^{\ln(w y_1^2)} = \textit{\Large e}^{- \int P dx + C}

\Rightarrow \; w y_1^2 = \textit{\Large e}^{- \int P dx + C}

Y considerando que w es una variable auxiliar, tenemos que

w y_1^2 = \textit{\huge e}^{\tiny - \int P dx + C}

\Rightarrow \; u' y_1^2 = \textit{\huge e}^{\tiny - \int P dx + C}

\Rightarrow \; u' = \frac{C_1 \textit{\Huge e}^{\tiny - \int P dx}}{y_1^2}

\Rightarrow \; u = \int \frac{C_1 \textit{\Huge e}^{\tiny - \int P dx}}{y_1^2} dx + C_2

Para simplificar esta última expresión, podemos escoger de forma conveniente los valores c_1=1 y c_2=0, y así, esta última expresión se convierte en

u = \int \frac{\textit{\Huge e}^{\tiny - \int P dx}}{y_1^2} dx

Finalmente, como y_2(x) = u(x) \cdot y_1(x), entonces u(x) = \frac{y_2(x)}{y_1(x)}, de esta forma obtenemos

\frac{y_2(x)}{y_1(x)} = \int \frac{\textit{\Huge e}^{\tiny - \int P dx}}{\left( y_1(x) \right)^2} dx \Rightarrow y_2(x) = y_1(x) \int \frac{\textit{\Huge e}^{\tiny - \int P dx}}{ \left( y_1(x) \right)^2} dx

Esta última igualdad nos provee una fórmula para calcular una solución y_2 de una ecuación diferencial ordinaria lineal homogénea de segundo orden conociendo una solución particular y_1 y en consecuencia, la solución general de la ecuación. Veamos con algunos ejemplos como aplicar esta fórmula.

Anuncios

Ejemplos

Ejemplo 1

Calcule la solución general de la siguiente ecuación diferencial ordinaria lineal homogénea de segundo orden

x^2y'' - 3xy' + 4y = 0

en el intervalo (0,+\infty), sabiendo que y_1=x^2 es una solución particular de ésta.

Empezamos estandarizando la ecuación, en este caso dividimos cada sumando de la ecuación por x^2 para obtener

y'' - \frac{3}{x}y' + \frac{4}{x}y = 0

Así, identificando P(x)=\frac{3}{x} podemos calcular la otra solución de esta ecuación sustituyendo en la fórmula, obtenemos que

y_2(x) = x^2 \int \frac{\textit{\Huge e}^{\tiny - \int \frac{3}{x} dx}}{(x^2)^2} dx = x^2 \int \frac{x^3}{(x^2)^2} dx = x^2 \ln(x)

De esta forma, contamos con las dos soluciones particulares y_1=x^2 y y_2(x) = x^2 \ln(x) y en consecuencia, podemos expresar la solución general de la ecuación, pues cualquier otra solución se expresa como combinación lineal de estas dos de la siguiente forma:

y(x) = c_1 x^2 + c_2 x^2 \ln(x)


Ecuaciones Diferenciales Ordinarias Lineales Homogéneas y No-Homogéneas

Al estudiar ecuaciones diferenciales ordinarias lineales de primer orden, aquellas expresadas de la forma a_1(x) y' + a_0(x) y = g(x), fue de vital importancia considerar el valor de la función g(x) pues nos permitió establecer una nueva forma de clasificar este tipo de ecuaciones diferenciales.

La situación no será diferente cuando estudiemos ecuaciones diferenciales ordinarias lineales de orden superior, pues al estar estas expresadas de la siguiente forma

a_n(x) y^{(n)} + a_{n-1}(x) y^{(n-1)} + \ldots + a_1(x) y' + a_0(x) y = g(x)

Diremos que una ecuación diferencial ordinaria lineal es homogénea si g(x)=0, y por otra parte, diremos que es no-homogénea si g(x) \neq 0. En los siguientes ejemplos ilustraremos esta idea con mayor precisión.

Anuncios

Ejemplos

Ejemplo 1

La siguiente ecuación diferencial ordinaria lineal de segundo orden es homogénea, pues g(x)=0

2 y'' + 3y' +5y = 0

Ejemplo 2

La siguiente ecuación diferencial ordinaria lineal de tercer orden es homogénea, pues g(x)=0

-5 y''' + 7x^3y^4 = 0

Ejemplo 3

La siguiente ecuación diferencial ordinaria lineal de segundo orden es no-homogénea, pues g(x)=10x^3

3x^2 y'' + 7xy'+ 9 = 10x^3

Ejemplo 4

La siguiente ecuación diferencial ordinaria lineal de segundo orden es no-homogénea, pues g(x)=-7

\ln(x) y'' + 6\ln(x)y = -7

Ejemplo 5

La siguiente ecuación diferencial ordinaria lineal de tercer orden es no-homogénea, pues g(x)=\textit{\Large e}^x

\frac{11}{x}y''' - x^3 y'' + 6y' + 10y = \textit{\Large e}^x


Anuncios

Principio de Superposición para Ecuaciones Homogéneas

Hemos mencionado antes que una ecuación diferencial ordinaria de orden superior puede tener varias soluciones si se presenta un problema de condiciones en la frontera.

El siguiente teorema nos permitirá sentar una base para el calculo de la solución de las ecuaciones diferenciales ordinarias lineales homogéneas tomando en cuenta las diferentes soluciones que esta puede tener.

Teorema (Principio de Superposición – Ecuaciones Homogéneas)

Si y_1,y_2, \ldots ,y_k son k soluciones de una ecuación diferencial ordinaria lineal homogénea de la forma

a_n(x) y^{(n)} + a_{n-1}(x) y^{(n-1)} + \ldots + a_1(x) y' + a_0(x) y = 0

definidas en un intervalo I y c_ 1, c_2, \ldots , c_k son constantes reales, entonces la combinación lineal

y = c_ 1y_1 + c_2 y_2 + \ldots + c_k y_k

también será una solución de la ecuación diferencial en el intervalo I.

De este teorema se derivan dos afirmaciones que nos serán de utilidad a la hora de definir la solución de una ecuación diferencial y es que podemos notar que al ser c_ 1, c_2, \ldots , c_k cualesquiera constantes reales, estas pudieran ser cero. Entonces, si y_p es una de las soluciones, tenemos que:

  • Cualquier múltiplo de la solución y_p, es decir, cualquier función de la forma c \cdot y_p es una solución de la ecuación.
  • Si todas las constantes son iguales a cero, entonces la función constante igual a cero, es decir, y=0 también es solución de la ecuación. Esta solución se conoce como la solución trivial.
Anuncios

Soluciones Linealmente Dependientes e Independientes

Diremos que un conjunto de k soluciones y_1,y_2, \ldots ,y_k definidas en un intervalo I, es linealmente dependiente si cualquiera de estas soluciones se puede expresar como una combinación lineal de las demás soluciones, es decir, tal que existen constantes c_ 1, c_2, \ldots , c_k con al menos una de ellas diferente de cero, tal que

c_ 1y_1 + c_2 y_2 + \ldots + c_k y_k = 0

Por otra parte, diremos que un conjunto de k soluciones y_1,y_2, \ldots ,y_k definidas en un intervalo I, es linealmente independiente si no son linealmente dependientes, y más aún, si y_1,y_2, \ldots ,y_n es un conjunto de soluciones linealmente independiente de una ecuación diferencial ordinaria lineal homogénea de orden n, diremos que este es un conjunto fundamental de soluciones.

Si consideramos una ecuación diferencial ordinaria lineal homogénea de orden n cuyos coeficientes a_0(x), a_1(x) \ldots , a_n(x) son funciones continuas en un intervalo I, es decir, expresada de la siguiente manera

a_n(x) y^{(n)} + \ldots + a_1(x) y' + a_0(x) y = 0

Entonces siempre podemos garantizar que existe un conjunto fundamental de soluciones, e incluso, la solución general de esta ecuación se expresa como una combinación lineal de este conjunto de soluciones, es decir,

y = c_ 1y_1 + c_2 y_2 + \ldots + c_n y_n


Ecuaciones Homogéneas de grado alpha ⍺

Funciones Homogéneas de grado alpha ⍺

Las ecuaciones diferenciales que veremos a continuación se pueden reescribir como ecuaciones diferenciales de variables separables luego de recurrir a una variable auxiliar, sin embargo, debemos verificar primero que cumplan con una condición. Definamos entonces los elementos que determinarán el criterio para poder calcular su solución.

Decimos que una función f(x,y) es una función homogénea de grado \alpha si para algún número real \alpha se satisface las siguiente igualdad:

f(t \cdot x,t \cdot y)=t^{\alpha} \cdot f(x,y)

Veamos algunos ejemplos de este tipo de funciones para entender esta idea.

Anuncios

Ejemplos

Ejemplo 1

Verifique si la función que se presenta a continuación es una función homogénea de grado \alpha:

f(x,y) = x^2 - y^2

Para esto, evaluamos la función f en el punto (tx,ty) y manipulamos algebraicamente con el fin de sacar la forma t^{\alpha} como un factor común.

f(tx,ty)

\; = \; (tx)^2 - (ty)^2
\; = \; t^2x^2 - t^2y^2
\; = \; t^2(x^2 - y^2)
\; = \; t^2 f(x,y)

En este caso, decimos que la función f es una función homogénea de grado 2.

Ejemplo 2

Verifique si la función que se presenta a continuación es una función homogénea de grado \alpha:

f(x,y) = x^2 + xy

Para esto, evaluamos la función f en el punto (tx,ty) y manipulamos algebraicamente con el fin de sacar la forma t^{\alpha} como un factor común.

f(tx,ty)

\; = \; (tx)^2 + (tx)(ty)
\; = \; t^2x^2 + t^2xy
\; = \; t^2(x^2 + xy)
\; = \; t^2 f(x,y)

En este caso, decimos que la función f es una función homogénea de grado 2.

Anuncios

Ejemplo 3

Verifique si la función que se presenta a continuación es una función homogénea de grado \alpha:

f(x,y) = 4 x^2y^5 - 9x^4y^3

Para esto, evaluamos la función f en el punto (tx,ty) y manipulamos algebraicamente con el fin de sacar la forma t^{\alpha} como un factor común.

f(tx,ty)

\; = \; 4 (tx)^2(ty)^5 - 9(tx)^4(ty)^3
\; = \; 4(t^2x^2)(t^5y^5) - 9(t^4x^4)(t^3y^3)
\; = \; 4t^7x^2y^5 - 9t^7x^4y^3
\; = \; t^7(4x^2y^5 - 9x^4y^3)
\; = \; t^7 f(x,y)

En este caso, decimos que la función f es una función homogénea de grado 7.

Ejemplo 4

Verifique si la función que se presenta a continuación es una función homogénea de grado \alpha:

f(x,y) = 6 xy^3 + 5x^4 + 17

Para esto, evaluamos la función f en el punto (tx,ty) y manipulamos algebraicamente con el fin de sacar la forma t^{\alpha} como un factor común.

f(tx,ty)

\; = \; 6 (tx)(ty)^3 + 5(ty)^4 + 17
\; = \; 6 (tx)(t^3y^3) + 5(t^4y^4) + 17
\; = \; 6 t^4xy^3 + 5 t^4y^4 + 17

En este caso, no es posible sacar t^4 como un factor común y en consecuencia, la función f no se puede expresar de la forma t^{\alpha} f(x,y), por lo tango, no es una función homogénea de grado \alpha.


Ecuaciones Homogéneas de grado alpha ⍺

Al considerar la ecuación diferencial M(x, y) dx + N(x, y) dy = 0, hemos podido clasificar algunas ecuaciones de esta forma como Ecuaciones Exactas y aunque hemos encontrado otras no exactas, se han podido reducir a ecuaciones exactas, sin embargo, no siempre podemos aplicar ese método establecido en estos casos.

Entonces, debemos establecer una nueva forma de clasificar este tipo de ecuaciones. Formalmente, si consideramos una ecuación diferencial expresada de la siguiente forma:

M(x, y) dx + N(x, y) dy = 0

Decimos que esta es una ecuación homogénea de grado \alpha si las funciones M(x,y) y N(x,y) son funciones de homogéneas de grado \alpha.

Si M(x, y) dx + N(x, y) dy = 0 es una ecuación diferencial ordinaria homogénea de grado \alpha, será posible reducir esta ecuación a una ecuación diferencial homogénea de variables separables recurriendo a una de las siguientes variables auxiliares para efectuar una sustitución de variable

u=\frac{y}{x} \ \text{ o } \ v=\frac{x}{y}

Notando que podemos reescribir estas dos expresiones respectivamente de la siguiente forma:

y = ux \ \text{ o } \ x = vy

Veamos entonces con algunos ejemplos calcular la solución de este tipo de ecuaciones diferenciales.

Anuncios

Ejemplos

Ejemplo 5

Calcule la solución de la siguiente ecuación diferencial ordinaria

(x^2-2y^2)dx + (2x^2+3xy)dy = 0

Debemos recurrir a una sustitución de variable para reducirla a una ecuación diferencial de variables separables, pero antes es necesario verificar que las funciones M(x,y) = (x^2-2y^2) y N(x,y) = (2x^2+3xy) son ambas funciones homogéneas de grado \alpha.

M(tx,ty)

\; = \; (tx)^2-2(ty)^2
\; = \; t^2x^2-2t^2y^2
\; = \; t^2(x^2-2y^2)
\; = \; t^2 M(x,y)

N(tx,ty)

\; = \; 2(tx)^2+3(tx)(ty)
\; = \; 2t^2x^2+3t^2xy
\; = \; t^2(2x^2+3xy)
\; = \; t^2 N(x,y)

Habiendo verificado que M(x,y) y N(x,y) son ambas funciones homogéneas de grado 2, podemos recurrir a la siguiente variable auxiliar

u=\frac{y}{x} \Rightarrow y=ux

De esta forma, podemos sustituirla en nuestra ecuación diferencial. Notemos también, que si queremos hacer esta sustitución, debemos calcular el diferencial dy

dy = udx + xdu

Entonces, sustituimos los elementos y y dy en la ecuación diferencial.

(x^2-2y^2)dx + (2x^2+3xy)dy = 0

\Rightarrow \big( x^2-2(ux)^2 \big)dx + \big( 2x^2+3x(ux) \big)( udx + xdu) = 0

Una vez que hemos hecho la sustitución de las variables, manipulamos algebraica las expresiones que definen la ecuación diferencial con el fin de separar las variables.

( x^2-2u^2x^2 )dx + ( 2x^2+3x^2u)( udx + xdu) = 0

\; \Rightarrow \; ( x^2-2u^2x^2 )dx + ( 2x^2+3x^2u )udx + \big( 2x^2+3x^2u \big)xdu = 0

\; \Rightarrow \; ( x^2-2u^2x^2 )dx + ( 2x^2u+3x^2u^2 )dx + ( 2x^3+3x^3u )du = 0

\; \Rightarrow \; ( x^2-2u^2x^2 + 2x^2u+3x^2u^2 )dx + (2+3u ) x^3 du = 0

\; \Rightarrow \; ( 1 -2u^2 + 2u + 3u^2 ) x^2 dx + (2+3u ) x^3 du = 0

\; \Rightarrow \; ( 1 + 2u + u^2 ) x^2 dx + (2+3u ) x^3 du = 0

\; \Rightarrow \; ( 1 + 2u + u^2 ) x^2 dx = - (2+3u ) x^3 du

\; \Rightarrow \; \frac{x^2}{x^3}dx = -\frac{(2+3u )}{( 1 + 2u + u^2 )} du

\; \Rightarrow \; \frac{1}{x}dx = -\frac{(2+3u )}{( 1 + u )^2} du

Ya que las variables están separadas, procedemos a calcular las respectivas integrales notando que la integral del lado derecho debe calcularse usando el método de integración por partes. Entonces,

\int -\frac{(2+3u )}{( 1 + u )^2} du = \int \frac{1}{x}dx

\; \Rightarrow \; -\frac{1}{1+u} - 3\ln(1+u) = ln(x) + c
\; \Rightarrow \; \frac{1}{1+u} + 3\ln(1+u) + ln(x) = c

Finalmente, sustituimos la variable u y obtenemos la solución general de la ecuación diferencial que viene expresada de forma implícita como

\frac{1}{1+\frac{y}{x}} + 3\ln \left(1+\frac{y}{x} \right) + \ln(x) = c