Protegido: Matemáticas 41 – Sección 01 – E2021 – Evaluación 7

Este contenido está protegido por contraseña. Para verlo introduce tu contraseña a continuación:

R para introducir a la Econometría: El coeficiente de determinación r².

Una vez que hemos calculado la función de regresión muestral como un modelo lineal a partir de un conjunto de datos, podemos notar en su gráfica que las observaciones no necesariamente caen sobre la línea que describe dicha función y aunque esta sería situación ideal (pues así podemos describir con precisión todo el conjunto de datos usando una función), esto no ocurre en la realidad.

También pudiera interesarte

Anuncios

La bondad de ajuste

Considerando el siguiente gráfico, si todas las observaciones cayeran en la línea de regresión, obtendríamos lo que se conoce como un ajuste perfecto, pero rara vez se presenta este caso. Por lo general los valores de $\hat{u}_i$ pueden ser positivos o negativos, gráficamente, podemos decir que algunas observaciones estarán por encima de la línea de regresión y otras por debajo.

Diagrama de Dispersión y Línea de Regresión | totumat.com

Aunque se tiene la esperanza de que los residuos alrededor de la línea de regresión sean lo más pequeños posibles, el coeficiente de determinación r^2 (caso de dos variables) o R^2 (regresión múltiple) es una medida comprendida que dice que tan bien se ajusta la línea de regresión muestral a los datos.

Antes de mostrar cómo calcular r^2, consideremos Diagramas de Venn para entender qué representa el valor de r^2, de forma que: el círculo Y, representa la variación en la variable dependiente Y; el círculo X, la variación en la variable explicativa X.

Si estos dos círculos no se intersectan, entonces la variación en Y no es explicada por la variación en X. El valor de r^2 que representa esta situación, es r^2=0

El coeficiente de determinación r² | totumat.com

La intersección de los dos círculos (el área sombreada) indica la medida en la cual la variación en Y se explica por la variación en X.

Entre mayor sea el área de la intersección, mayor será la variación en Y que se explica por la variación de X. r^2 es tan sólo una medida numérica de esta intersección y generalmente es un valor entre 0 y 1.

El coeficiente de determinación r² | totumat.com

Si estos dos círculos se intersectan en su totalidad, es decir, son iguales, entonces la variación en Y está explicada en su totalidad por la variación de la variable X. El valor de r^2 que representa esta situación, es r^2=1

El coeficiente de determinación r² | totumat.com

Para calcular r^2, partimos del hecho que Y_i = \hat{Y}_i + \hat{u}_i, que expresado en forma de desviación, es decir, como la diferencia de cada observación con la media,

y_i = \hat{y}_i + \hat{u}_i

Al elevar al cuadrado esta última ecuación en ambos lados y sumar sobre la muestra, obtenemos

\sum y_i^2

= \sum \hat{y}_i^2 + \sum \hat{u}_i^2 + 2\sum \hat{y}_i \hat{u}_i

= \sum \hat{y}_i^2 + \sum \hat{u}_i^2

= \hat{\beta}_2^2 \sum \hat{x}_i^2 + \sum \hat{u}_i^2

Esa última igualdad se debe a que \sum \hat{y}_i \hat{u}_i = 0 y \hat{y}_i = \hat{\beta}_2 \hat{x}_i.

Las diversas sumas de cuadrados en esta ecuación se describen de la siguiente manera:

  • \sum y_i = \sum (Y_i - \overline{Y})^2 es la variación total de los valores reales de Y respecto de su media muestral, que puede denominarse la suma de cuadrados total (SCT).
  • \sum \hat{y}_i = \sum (\hat{y}_i - \overline{Y})^2 = \hat{\beta}_2^2 \sum \hat{x}_i^2 es la variación de los valores de Y estimados alrededor de su media, que apropiadamente puede llamarse la suma de cuadrados debida a la regresión (es decir, debida a la variable explicativa), o explicada por ésta, o simplemente la suma de cuadrados explicada (SCE).
  • \sum \hat{u}_i es la la variación residual o no explicada de los valores de Y alrededor de la línea de regresión, o sólo la suma de cuadrados de los residuos (SCR).

Por lo tanto, podemos reescribir la última ecuación de la siguiente manera:

SCT = SCE + SCR

Demostrando así, que la variación total en los valores Y observados alrededor del valor de su media puede dividirse en dos partes, una atribuible a la línea de regresión y la otra a fuerzas aleatorias, pues no todas las observaciones Y caen sobre la línea ajustada.

Dividiendo esta ecuación, entre la SCT a ambos lados tenemos que

1 = \dfrac{SCE}{SCT} + \dfrac{SCR}{SCT}

= \dfrac{\sum (\hat{y}_i - \overline{Y})^2}{\sum (Y_i - \overline{Y})^2} + \dfrac{ \sum \hat{u}_i^2}{\sum (Y_i - \overline{Y})^2}

Finalmente, definimos el coeficiente de determinación r^2 como

r^2 = \dfrac{SCE}{SCT} = \dfrac{\sum (\hat{y}_i - \overline{Y})^2}{\sum (Y_i - \overline{Y})^2}

Podemos calcularlo en R usando la siguiente sintaxis:

r2 <- sum((Y.e - m.Y)^2)/sum((Y - m.Y)^2)

También podemos definir el coeficiente de determinación r^2 como

r^2 = 1 - \dfrac{SCR}{SCT} = 1 - \dfrac{ \sum \hat{u}_i^2}{\sum (Y_i - \overline{Y})^2}

Podemos calcularlo en R usando la siguiente sintaxis:

r2 <- 1 - sum((Y - Y.e)^2)/sum((Y - m.Y)^2)

Ejemplo

Consideremos un pequeño conjunto de datos, particularmente, los datos que se encuentran en la Tabla 3.2 del libro de Econometría de Damodar N. Gujarati and Dawn Porter en su quinta edición. Este conjunto de datos proporciona los datos primarios que se necesitan para estimar el efecto cuantitativo de la escolaridad en los salarios:

ObservaciónSalarioEscolaridad
14.45676
25.777
35.97878
47.33179
57.318210
66.584411
77.818212
87.835113
911.022314
1010.673815
1110.836116
1213.61517
1313.53118
Tabla 3.2

Una vez que hemos calculado el modelo lineal que define este conjunto de datos, podemos calcular el coeficiente de determinación para ver qué tan relacionadas están las variables Salario y Escolaridad, para esto, usamos la siguiente sintaxis:

r2 <- sum((salario.e - m.salario)^2)/sum((salario - m.salario)^2)

Al ejecutar estas instrucciones obtenemos coeficiente de determinación r^2, que en este caso es igual a 0.9077914.

En su pantalla debería aparecer:

Resultados de R, Coeficiente de Determinación r cuadrado. | totumat.com

En este caso, el valor del coeficiente de determinación sugiere que la variación en Y está explicada casi en su totalidad por la variación de la variable X.


Varianza y Error estándar

R para introducir a la Econometría: El error estándar.

El Método de los Mínimos Cuadrados Ordinarios (MCO) nos provee una forma estimar los parámetros \hat{\beta}_2 y \hat{\beta}_1, sin embargo, al estar estos valores condicionados a la muestra que se tome, es probable que entre una muestra y otra, estos valores presenten variaciones. Entonces, surge la pregunta: ¿de qué forma podemos garantizar precisión en las estimaciones? O al menos, ¿podemos medir la imprecisión de estas?

También pudiera interesarte

Anuncios


La varianza muestral y el error estándar

La teoría estadística provee una forma de medir la precisión de un valor estimado, esto es, el error estándar (ee) que está definido como la desviación estándar de la distribución muestral del estimador. Es importante recalcar que al hablar sólo de desviación estándar, hacemos referencia a la población, en cambio, al hablar del error estándar, hacemos referencia a la muestra de dicha población.

Considerando la varianza muestral, que mide la variabilidad de los datos respecto a su media; podemos calcular el error estándar al tomar la raíz cuadrada de esta. Entonces, si \sigma es la desviación estándar:

Calculamos la varianza y el error estándar del parámetro \hat{\beta}_2 usando las siguientes fórmulas respectivamente,

var(\hat{\beta}_2) = \dfrac{\sigma^2}{\sum x_i^2}

ee(\hat{\beta}_2) = \dfrac{\sigma}{ \sqrt{\sum x_i^2} }

Podemos calcular la varianza y el error estándar del parámetro \hat{\beta}_2 en R usando la siguiente sintaxis:

var.beta2 <- sigma2.e/sum( (Yd-m.Yd)^2 )
ee.beta2 <- sqrt(v.beta2)

Por otra parte calculamos la varianza y el error estándar del parámetro \hat{\beta}_1 usando las siguientes fórmulas respectivamente,

var(\hat{\beta}_1) = \dfrac{ \sum X_i^2 }{n \sum x_i^2} \cdot \sigma^2

ee(\hat{\beta}_1) = \sqrt{ \dfrac{ \sum X_i^2 }{n \sum x_i^2} } \cdot \sigma

Podemos calcular la varianza y el error estándar del parámetro \hat{\beta}_1 en R usando la siguiente sintaxis:

var.beta1 <- sigma2.e*sum( Yd^2 )/(length(Yd)*sum( (Yd-m.Yd)^2 ))
ee.beta1 <- sqrt(v.beta1)

La desviación estándar estimada y el error estándar de estimación

Si bien contamos con los datos para calcular parte de estas expresiones, aún desconocemos el valor de \sigma^2, pues este valor se obtiene a partir de la población pero sólo contamos con una muestra, afortunadamente, podemos definir una fórmula que nos estima a través de del Método de Mínimos Cuadrados Ordinarios a la verdadera pero desconocida \sigma^2, esta fórmula es

\hat{\sigma}^2 = \dfrac{\sum \hat{u}_i^2}{n-2}

Podemos calcular la desviación estándar estimada en R usando la siguiente sintaxis:

sigma2.e <- sum(res^2)/(lenght(X)-2)

Vale la pena destacar que la raíz cuadrada de \hat{\sigma}^2 se conoce como el error estándar de estimación o el error estándar de la regresión (eee). No es más que la desviación estándar de los valores Y alrededor de la línea de regresión estimada, la cual suele servir como medida para resumir la “bondad del ajuste” de dicha línea. Se calcula de la siguiente manera

\hat{\sigma} = \sqrt{\dfrac{\sum \hat{u}_i^2}{n-2}}

Podemos calcular este valor en R usando la siguiente sintaxis:

ee.e <- sqrt(sigma2.e)

Ejemplo

Consideremos un pequeño conjunto de datos, particularmente, los datos que se encuentran en la Tabla 3.2 del libro de Econometría de Damodar N. Gujarati and Dawn Porter en su quinta edición. Este conjunto de datos proporciona los datos primarios que se necesitan para estimar el efecto cuantitativo de la escolaridad en los salarios:

ObservaciónSalarioEscolaridad
14.45676
25.777
35.97878
47.33179
57.318210
66.584411
77.818212
87.835113
911.022314
1010.673815
1110.836116
1213.61517
1313.53118
Tabla 3.2

Una vez que hemos calculado el modelo lineal que define este conjunto de datos, podemos determinar el error estándar de los parámetros estimados, pero primero debemos estimar la desviación estándar usando la siguiente sintaxis:

sigma2.e <- sum( (residuos)^2 )/(length(salario)-2)

Podemos calcular la varianza y el error estándar del parámetro \hat{\beta}_2 en R usando la siguiente sintaxis:

var.beta2 <- sigma2.e/sum( (escolaridad-m.escolaridad)^2 )
ee.beta2 <- sqrt(var.beta2)

Al ejecutar estas instrucciones obtenemos error estándar del parámetro \hat{\beta}_2, que en este caso es igual a 0.06958134.


Podemos calcular la varianza y el error estándar del parámetro \hat{\beta}_1 en R usando la siguiente sintaxis:

var.beta1 <- sigma2.e*sum( escolaridad^2 )/(length(escolaridad)*sum( (escolaridad-m.escolaridad)^2 ))
ee.beta1 <- sqrt(var.beta1)

Al ejecutar estas instrucciones obtenemos error estándar del parámetro \hat{\beta}_1, que en este caso es igual a 0.8746239.

En su pantalla debería aparecer:

Varianza y Error Estándar de los parámetros en R. | totumat.com

Diagrama de Dispersión

R para introducir a la Econometría: Diagrama de Dispersión

Antes de empezar a definir un modelo sobre un conjunto de datos, es importante conocer el comportamiento de una variable respecto a otra pues de esta forma, podemos hacernos una idea de cual es el modelo más adecuado para describirlo.

También pudiera interesarte

Anuncios


Diagrama de Dispersión

Una de las formas más directas y sencillas para estudiar la forma en que se relacionan dos variables es usando un diagrama de dispersión. Si consideramos dos variables de un conjunto de datos, digamos una variable exógena x y una variable endógena y, un Diagrama de Dispersión (o Gráfico de Dispersión) consiste en ubicar en el plano cartesiano cada par ordenado formado por los elementos de estas dos variables. Ubicando la variable exógena en el eje horizontal y la variable endógena en el eje vertical.

De esta forma, si nuestro objetivo es definir un Modelo de Regresión Lineal, ubicamos en el eje horizontal, los valores de la variable X y en el eje vertical, los valores de la variable Y. Podemos generar un diagrama de dispersión en R recurriendo a la instrucción plot y usamos la siguiente sintaxis:

plot(X,Y)

Consideremos un pequeño conjunto de datos, particularmente, los datos que se encuentran en la Tabla 3.2 del libro de Econometría de Damodar N. Gujarati and Dawn Porter en su quinta edición. Este conjunto de datos proporciona los datos primarios que se necesitan para estimar el efecto cuantitativo de la escolaridad en los salarios:

ObservaciónSalarioEscolaridad
14.45676
25.777
35.97878
47.33179
57.318210
66.584411
77.818212
87.835113
911.022314
1010.673815
1110.836116
1213.61517
1313.53118
Tabla 3.2

Para generar un diagrama de dispersión que nos ayude a estudiar como el nivel de estudios afecta el salario de una persona, entonces: la variable Escolaridad será nuestra variable exógena y será ubicada en el eje horizontal; la variable Salario será nuestra variable endógena y será ubicada en el eje vertical.

Recurriremos a la instrucción plot para generar un diagrama de dispersión y usamos la siguiente sintaxis:

plot(escolaridad,salario)

Al ejecutar esta instrucción, aparecerá de forma inmediata el siguiente gráfico:

Diagrama de Dispersión | totumat.com

En su pantalla debería aparecer lo siguiente:

Diagrama de Dispersión | totumat.com

Residuos

Si bien los diagramas de dispersión nos ayudan a estudiar el comportamiento de dos variables, también nos ayudan a estudiar el comportamiento de los residuos. Uno de los supuestos para del Modelo Clásico de Regresión Lineal, estipula que no debe haber autocorrelación, esto quiere decir que la correlación de los residuos debe ser nula.

A partir de la forma en que está definido el modelo lineal, podemos calcular los residuos usando la siguiente fórmula:

\hat{u}_i = Y_i - \hat{Y}_i

Entonces, si calculamos cada uno de los valores estimados \hat{Y}_i, podemos determinar los residuos usando la siguiente sintaxis:

Y.e <- beta1 + beta2*X
res <- Y - Y.e

Usamos la instrucción plot(res) para generar un gráfico de dispersión de los residuos tomando en cuenta que en el eje horizontal se ubica el número de observación y en el vertical el residuo correspondiente. Un indicador de no autocorrelación es que el gráfico de dispersión no presente ningún patrón de comportamiento, en términos coloquiales: que estén todos a lo loco.

Continuando con nuestro ejemplo, generamos un gráfico usando la siguiente sintaxis:

salario.e <- beta1 + beta2*escolaridad
residuos <- salario - salario.e
plot(residuos)

Al ejecutar estas instrucciones, aparecerá de forma inmediata el siguiente gráfico:

Diagrama de Dispersión de los Residuos | totumat.com

En su pantalla debería aparecer:

Diagrama de Dispersión de los Residuos | totumat.com

Aunque pareciera no haber ningún patrón, no podemos asegurar no hay autocorrelación, también hay que considerar que el tamaño de la muestra es pequeño así que las afirmaciones que se hagan sobre el comportamiento que describe el modelo lineal puede ser impreciso.


Curva de Lorenz y Áreas

La Curva de Lorenz y el Coeficiente de Gini

Una vez que se determina el Producto Interno Bruto de un país, ¿qué cantidad de este dinero le corresponde a cada ciudadano? Independientemente de cómo esté distribuida la riqueza entre los habitantes de un país, por distintas razones (justas o no), esta distribución no es equitativa, de ahí radica la importancia de presentar un modelo matemático que permita describir esta distribución.

También pudiera interesarte

Anuncios

La Curva de Lorenz

La Curva de Lorenz es una función que permite describir la distribución de la riqueza de en un país y también es conocida como la Línea de Desigualdad Perfecta. Usualmente esta se denota como L(x). En términos porcentuales, establece una correspondencia entre el porcentaje acumulado de ingresos y el porcentaje acumulado de la población receptora de ingresos, de esta forma, podemos decir que esta cumple con las siguientes condiciones:

  • Esta función corresponde a valores desde el 0% de la población acumulada hasta el 100% de la población acumulada, es decir, Dom(L) = [0,1].
  • Esta función corresponde a valores desde el 0% de ingresos acumulados hasta el 100% de los ingresos acumulados, es decir, Rgo(L) = [0,1].
  • El 0% de los ingresos es repartido entre el 0% de la población, es decir, L(0)=0.
  • El 100% de los ingresos es repartido entre el 110% de la población, es decir, L(1)=1.
  • La distribución de los ingresos nunca es equitativa, es decir, L(x) < x para todo x en su dominio.

Este último punto se debe a que la distribución equitativa de los ingresos se representa con la función identidad, es decir, con la función f(x)=x; y es conocida como la Línea de Igualdad Perfecta. La Curva de Lorenz se representa gráficamente con una función estrictamente creciente por debajo de la recta identidad de la siguiente forma:

La Curva de Lorenz o Línea de Desigualdad Perfecta | totumat.com

Veamos en los siguientes ejemplos algunas Curva de Lorenz y la distribución de los ingresos que estas describen.

Ejemplos

Ejemplo 1

Considere la función L(x) = \frac{1}{3}x^2 + \frac{2}{3}x, esta es una Curva de Lorenz y sobre ella podemos considerar lo siguiente:

  • Si evaluamos esta función en 0.2, tenemos que f(0.2) = \frac{1}{3}(0.2)^2 + \frac{2}{3}(0.2) = 0.1466 esto implica que el 20% de la población percibe el 14.66% de los ingresos.
  • Si evaluamos esta función en 0.4, tenemos que f(0.4) = \frac{1}{3}(0.4)^2 + \frac{2}{3}(0.4) = 0.32 esto implica que el 40% de la población percibe el 32% de los ingresos.
  • Si evaluamos esta función en 0.75, tenemos que f(0.75) = \frac{1}{3}(0.75)^2 + \frac{2}{3}(0.75) = 0.6875 esto implica que el 75% de la población percibe el 68.75% de los ingresos.

La función L(x) se representa gráficamente de la siguiente forma:

La Curva de Lorenz o Línea de Desigualdad Perfecta | totumat.com

Ejemplo 2

Considere la función L(x) = \frac{7}{18}x^6 + \frac{11}{18}x^2, esta es una Curva de Lorenz y sobre ella podemos considerar lo siguiente:

  • Si evaluamos esta función en 0.15, tenemos que f(0.15) = \frac{7}{18}(0.15)^6 + \frac{11}{18}(0.15)^2 = 0.013 esto implica que el 15% de la población percibe el 1.3% de los ingresos.
  • Si evaluamos esta función en 0.5, tenemos que f(0.5) = \frac{7}{18}(0.5)^6 + \frac{11}{18}(0.5)^2 = 0.1588 esto implica que el 50% de la población percibe el 15.88% de los ingresos.
  • Si evaluamos esta función en 0.8, tenemos que f(0.8) = \frac{1}{3}(0.8)^2 + \frac{2}{3}(0.8) = 0.4930 esto implica que el 80% de la población percibe el 49.30% de los ingresos.

La función L(x) se representa gráficamente de la siguiente forma:

La Curva de Lorenz o Línea de Desigualdad Perfecta | totumat.com

Anuncios

El Coeficiente de Gini

Es notable que en algunos casos la Curva de Lorenz está más cercana a la recta identidad pero en otros, está más lejana, lo que pudiera indicar que tan desigual es la distribución de los ingresos. Observando esta situación, vale la pena preguntarse: ¿habrá una forma cuantificar esta diferencia? La respuesta es sí.

El Coeficiente de Gini mide la separación de la Curva de Lorenz respecto a la Línea de Igualdad Perfecta para determinar el grado de desigualdad que existe en la distribución de los ingreso, para llevar a cabo esta medición, consideramos las áreas A (roja) y B (azul) expresadas en el siguiente gráfico:

La Curva de Lorenz, áreas y Coeficiente de Gini | totumat.com
  • El área A es el área entre la Línea de Igualdad Perfecta y la Curva de Lorenz.
  • El área B es el área bajo la Curva de Lorenz.

El Coeficiente de Gini se determina calculando el cociente entre la área A y la suma de las áreas A+B, es decir,

\frac{A}{A+B}

Pero podemos notar inmediatamente que la suma de las áreas A+B es justamente el área de un triángulo de base igual a 1 y de altura igual a 1, por lo tanto, el área de este triángulo es \frac{1}{2}. De esta forma, si efectuamos siguiente división

\dfrac{ \ A \ }{\frac{1}{2}}

Obtenemos una nueva expresión para calcular el Coeficiente de Gini, que será multiplicar el área A por 2:

2 \cdot A

Esta fórmula para calcular el Coeficiente de Gini nos indica que tan amplia es el área A y en consecuencia, qué tan alejada está la distribución de los ingresos de una distribución equitativa perfecta. Es por esto que al calcular este coeficiente, debemos tomar en cuenta que:

  • Si el Coeficiente de Gini está cercano a cero, esto quiere decir que la Curva de Lorenz está cerca de la Línea de Igualdad Perfecta y en consecuencia, la distribución de los ingresos tiende a ser equitativa.
  • Si el Coeficiente de Gini está cercano a uno, esto quiere decir que la Curva de Lorenz está alejada de la Línea de Igualdad Perfecta y en consecuencia, la distribución de los ingresos tiende a ser desigual.

En los siguientes ejemplos, veremos usaremos la fórmula para calcular el Coeficiente de Gini y veremos su interpretación.

Ejemplos

Ejemplo 3

Considerando la Curva de Lorenz L(x) = \frac{1}{3}x^2 + \frac{2}{3}x, calcule el Coeficiente de Gini e interprete su resultado.

Representamos gráficamente la función L(x) e identificamos las áreas involucradas para el cálculo del Coeficiente de Gini.

La Curva de Lorenz, áreas y Coeficiente de Gini | totumat.com

Calculamos el área A, identificada con rojo:

A \ = \ \int_{0}^{1} \left( x - L(x) \right) \ dx

\ = \ \int_{0}^{1} \left( x - \left( \frac{1}{3}x^2 + \frac{2}{3}x \right) \right) \ dx

\ = \ \left. \left( \frac{x^2}{2} - \frac{1}{3} \frac{x^3}{3} - \frac{2}{3} \frac{x^2}{2} \right) \right|_{0}^{1}

\ = \ \left( \frac{(1)^2}{2} - \frac{1}{3} \frac{(1)^3}{3} - \frac{2}{3} \frac{(1)^2}{2} \right) - \left( \frac{(0)^2}{2} - \frac{1}{3} \frac{(0)^3}{3} - \frac{2}{3} \frac{(0)^2}{2} \right)

\ = \ 0.0555

Por lo tanto, el Coeficiente de Gini es:

2 \cdot A = 2 \cdot 0.0555 = 0.1111

Al estar este valor cercano a cero, concluimos que la distribución de los ingresos tiende a ser equitativa.

  • Considerando la Curva de Lorenz L(x) = \frac{7}{18}x^6 + \frac{11}{18}x^3, calcule el Coeficiente de Gini e interprete su resultado.

Representamos gráficamente la función L(x) e identificamos las áreas involucradas para el cálculo del Coeficiente de Gini.

La Curva de Lorenz, áreas y Coeficiente de Gini | totumat.com

Calculamos el área A, identificada con rojo:

A \ = \ \int_{0}^{1} \left( x - L(x) \right) \ dx

\ = \ \int_{0}^{1} \left( x - \left( \frac{7}{18}x^6 + \frac{11}{18}x^3 \right) \right) \ dx

\ = \ \left. \left( \frac{x^2}{2} - \frac{7}{18} \frac{x^7}{7} - \frac{11}{18} \frac{x^4}{4} \right) \right|_{0}^{1}

\ = \ \left( \frac{(1)^2}{2} - \frac{7}{18} \frac{(1)^7}{7} - \frac{11}{18} \frac{(1)^4}{4} \right) - \left( \frac{(0)^2}{2} - \frac{7}{18} \frac{(0)^7}{7} - \frac{11}{18} \frac{(0)^4}{4} \right)

\ = \ 0.2916

Por lo tanto, el Coeficiente de Gini es:

2 \cdot A = 2 \cdot 0.2916 = 0.5833

Al estar este valor está más cercano a uno, que a cero, concluimos que la distribución de los ingresos tiende a ser desigual.