Análisis de Equilibrio de la Utilidad

Suponga que usted inició un negocio fabricando y vendiendo tapabocas. Habiendo estudiando los costos y los ingresos generados, ¿qué tanto ha valido la pena este negocio? Es decir, una vez que ha hecho una inversión, ¿ha generado dinero adicional o tiene menos dinero del que tenía antes de iniciar el negocio?

Anuncios

Una vez que se ha vendido una unidad de un artículo, debemos estudiar la cantidad de dinero que se ha ganado una vez que hemos descontado los costos de producción, a esta ganancia se le conoce como utilidad y de forma general, la ganancia generada por la producción y venta de todas las unidades de un artículo se conoce como utilidad total, esta se calcula restando los costos totales de los ingresos totales. Formalmente, si identificamos los ingresos totales con la variable I, los costos totales con la variable C y la utilidad total con la variable I, entonces podemos definir la siguiente ecuación:

U = I - C

A partir de la Ley de Tricotomía de los números reales, podemos estudiando esta ecuación para analizar el equilibrio entre los ingresos y los costos estableciendo tres casos:

  • Si U < 0, esto quiere decir que los costos totales de producción exceden los ingresos totales obtenidos por las ventas, en este caso decimos que existe una pérdida.
  • Si U > 0, esto quiere decir que los ingresos totales obtenidos por las ventas exceden los costos totales de producción, en este caso decimos que existe una ganancia, aunque también podemos decir que existe una utilidad.
  • Si U = 0, esto quiere decir que los ingresos totales obtenidos por las ventas son iguales a los costos totales de producción, en este caso decimos que existe un equilibrio.

Si consideramos el plano cartesiano, ubicando la cantidad de unidades del artículo (q) en el eje horizontal y la cantidad de dinero (p) en el eje vertical; establecemos una interpretación gráfica de estos casos señalando que existe una pérdida cuando la curva de costos está por encima de la curva de ingresos, existe una ganancia cuando la curva de ingresos están por encima de la curva de costos y particularmente al punto donde ambas curvas se cortan, lo llamamos punto de equilibrio de la utilidad.

Análisis de Equilibrio de la Utilidad | totumat.com

El área roja representa la región de pérdida, es decir, cuando la utilidad es negativa y el área azul representa la región de ganancia, es decir, cuando la utilidad es positiva.

Veamos en los siguientes ejemplos, cómo analizar el equilibrio de las utilidades calculando el punto de equilibrio una vez que ya contamos con las ecuaciones lineales de costos totales e ingresos totales.

Anuncios

Ejemplos

Ejemplo 1

Considerando la ecuación lineal de costos totales p = \frac{3}{10}q +40 y la ecuación lineal de ingresos totales p = \frac{6}{5}q, calcule el punto de equilibrio de la utilidad e indique cual es la cantidad mínima de unidades que debe ser vendida para obtener una ganancia.

Para calcular el punto de equilibrio de la utilidad debemos igualar las expresiones que definen ambas rectas y luego despejamos la variable q.

\frac{3}{10}q +40 = \frac{6}{5}q
\Rightarrow \ \frac{3}{10}q -\frac{6}{5}q = 0-40
\Rightarrow \ -\frac{9}{10}q = -40
\Rightarrow \ q = \frac{400}{9}

Una vez calculado el valor de q, lo sustituimos en la recta de nuestra preferencia y calculamos el valor de p. Sustituyamos entonces el valor q=\frac{400}{9} en la ecuación de demanda.

p = \ \frac{3}{10} \cdot \left( \frac{400}{9} \right) + 40
= \ \frac{40}{3} + 40
= \ \frac{160}{3}

Por lo tanto, el punto de equilibrio de la utilidad es \left( \frac{400}{9} , \frac{160}{3} \right). Grafiquemos ahora este punto de equilibrio identifiquemos las áreas que definen las pérdidas y las ganancias.

Análisis de Equilibrio de la Utilidad | totumat.com

Ejemplo 2

Considerando la ecuación lineal de costos totales p = 6q +60 y la ecuación lineal de ingresos totales p = 11q, calcule el punto de equilibrio de la utilidad e indique cual es la cantidad mínima de unidades que debe ser vendida para obtener una ganancia.

Para calcular el punto de equilibrio de la utilidad debemos igualar las expresiones que definen ambas rectas y luego despejamos la variable q.

6q +60 = 11q+0
\Rightarrow \ 6q -11q = 0-60
\Rightarrow \ -5q = -60
\Rightarrow \ q = 12

Una vez calculado el valor de q, lo sustituimos en la recta de nuestra preferencia y calculamos el valor de p. Sustituyamos entonces el valor q=12 en la ecuación de demanda.

p = \ 6 \cdot \left( 12 \right) + 60
= \ 72 + 60
= \ 132

Por lo tanto, el punto de equilibrio de la utilidad es \left( 12 , 132 \right). Grafiquemos ahora este punto de equilibrio identifiquemos las áreas que definen las pérdidas y las ganancias.

Análisis de Equilibrio de la Utilidad | totumat.com
Anuncios

Ejemplo 3

Considerando la ecuación lineal de costos totales p = 20q +50 y la ecuación lineal de ingresos totales p = 26q, calcule el punto de equilibrio de la utilidad e indique cual es la cantidad mínima de unidades que debe ser vendida para obtener una ganancia.

Para calcular el punto de equilibrio de la utilidad debemos igualar las expresiones que definen ambas rectas y luego despejamos la variable q.

20q +50 = 26q
\Rightarrow \ 20q -26q = 0-50
\Rightarrow \ -6q = -50
\Rightarrow \ q = \frac{25}{3}

Una vez calculado el valor de q, lo sustituimos en la recta de nuestra preferencia y calculamos el valor de p. Sustituyamos entonces el valor q=\frac{25}{3} en la ecuación de demanda.

p = \ 20 \cdot \left( \frac{25}{3} \right) + 50
= \ \frac{500}{3} + 50
= \ \frac{650}{3}

Por lo tanto, el punto de equilibrio de la utilidad es \left( \frac{25}{3} , \frac{650}{3} \right). Grafiquemos ahora este punto de equilibrio identifiquemos las áreas que definen las pérdidas y las ganancias.

Análisis de Equilibrio de la Utilidad | totumat.com

Ecuación Lineal de Ingresos Totales

Suponga que usted quiere iniciar un negocio fabricando tapabocas para su venta. Una vez que ha fabricado los tapabocas, usted fija el precio de venta de cada tapabocas en 100 Ps. De esta forma, si usted vende un tapabocas, habrá recibido un total de 100 Ps.; si usted vende dos tapabocas, habrá recibido un total de 200 Ps.; si usted vende tres tapabocas, habrá recibido un total de 300 Ps.; y de forma sucesiva, si vende q tapabocas, habrá recibido un total de 100 \cdot q Ps.

Nota: Perolitos (Ps.) es la moneda oficial de totumat.

Anuncios

La cantidad de dinero recibida por la venta de todas las unidades producidas de un artículo se conoce como ingreso total y de forma general, el ingreso se calcula multiplicando el precio por las cantidades vendidas. Formalmente, si identificamos el precio del artículo con la variable p, las cantidades vendidas con la variable q y el ingreso total con la variable I, entonces podemos definir la siguiente ecuación:

I = p \cdot q

Aunque el precio de un artículo puede variar dependiendo de la cantidad que se oferte de esta, podemos estudiar la relación que guardan la cantidad de unidades vendidas de un artículo con el ingreso total y para esto definimos un plano cartesiano cuyos ejes están definidos por el ingreso total, I; y las cantidades producidas del bien, q.

Establecemos una interpretación gráfica de estas relaciones notando que a medida que aumentan las cantidades vendidas, también aumenta el ingreso total. Particularmente, si el precio de un artículo es constante, el ingreso estará representado por una recta.

Ecuación Lineal de Ingresos Totales | totumat.com

A la ecuación de la recta de ingresos totales también se le conoce como la ecuación lineal de ingresos totales. Veamos en los siguientes ejemplos, cómo podemos usar la información sobre el precio un artículo para definir la ecuación lineal de ingresos totales.

Anuncios

Ejemplos

Ejemplo 1

Un productor de harina de trigo, fija el precio de cada cada kilo de harina en 1,2 Ps. ¿Cuál es la ecuación lineal de ingresos totales? ¿Cuál es el ingreso generado al vender 60 kilos?

Considerando que el precio kilo de harina es de 0,70 Ps., podemos expresar la ecuación lineal de ingresos totales de la siguiente forma:

I =1,2 \cdot q

Para determinar el costo de fabricar 60 kilos de harina, debemos considerar la ecuación lineal de ingresos totales y sustituir el valor q=60 en ella, de la siguiente forma

I = 1,2 \cdot (60) = 72

Por lo tanto, el ingreso generado por la venta de 60 kilos de harina es de 72 Ps.

La recta I =1,2 \cdot q es llamada la Ecuación Lineal de Ingresos Totales. Este tipo de ecuaciones siempre tendrá pendiente positiva, su gráfica será una recta creciente y pasa por el punto (60,72).

Ecuación Lineal de Ingresos Totales | totumat.com

Ejemplo 2

Suponga que un agricultor fija el precio de 10 kilos de zanahoria en 115 Ps., y el de 20 kilos de zanahoria en 185 Ps. ¿Cuál es la ecuación lineal de ingresos totales? ¿Cuál es el ingreso generado por la venta 30 kilos?

Debemos considerar que si el ingreso total es de 110 Ps. por la venta de 10 kilos, podemos representar esta información como un punto (I,q) el plano cartesiano donde q=10 y I=110, es decir, el punto (10,110); de igual forma, si el ingreso total es de 220 Ps. por la venta de 20 kilos, podemos representar esta información con el punto (20,220).

De esta forma, si contamos con estos dos puntos, podemos calcular la recta que pasa por ellos usando la ecuación punto-punto. Entonces, si P_1 = (10,115) y P_2 = (20,185) son dos puntos en el plano cartesiano, calculamos el valor de la pendiente,

m = \ \frac{I_2 - I_1}{q_2 - q_1}
= \ \frac{220 - 110}{20 - 10}
= \ \frac{110}{10}
= \ 11

Posteriormente aplicamos la ecuación punto-pendiente, escogiendo el punto de nuestra preferencia. Usemos el punto P_1

(I - I_1) = m \cdot (q - q_1)
\Rightarrow \ (I - 110) = 11 \cdot (q - 10)
\Rightarrow \ I - 110 = 11 \cdot q - 110
\Rightarrow \ I = 11 \cdot q - 110 + 110
\Rightarrow \ I = 11 \cdot q

La recta que pasa por los puntos P_1 y P_2 es llamada la Ecuación Lineal de Ingresos Totales. Este tipo de ecuaciones siempre tendrá pendiente positiva y su gráfica será una recta creciente.

Ecuación Lineal de Ingresos Totales | totumat.com

Para determinar el ingreso por la venta de 30 kilos de zanahoria, debemos considerar la ecuación lineal de ingresos totales y sustituir el valor q=30 en ella, de la siguiente forma

I = 11 \cdot (30) = 330

Por lo tanto, el ingreso de cultivar y cosechar 30 kilos de zanahoria es de 330 Ps.

Anuncios

Ejemplo 3

Suponga que en una fábrica de zapatos fija el precio de venta de 5 pares de zapatos para dama en 130 Ps., y el de 13 pares de zapatos en 338 Ps. ¿Cuál es la ecuación lineal de ingresos totales? ¿Cuál es el ingreso generado por la venta de 10 pares de zapatos?

Debemos considerar que si el ingreso total es de 130 Ps. por la venta de 5 pares, podemos representar esta información como el punto (5,130); de igual forma, si el ingreso total es de 338 Ps. por la venta de 13 pares, podemos representar esta información con el punto (13,338).

De esta forma, si contamos con estos dos puntos, podemos calcular la recta que pasa por ellos usando la \textbf{ecuación punto-punto}. Entonces, si P_1 = (5,130) y P_2 = (13,338) son dos puntos en el plano cartesiano, calculamos el valor de la pendiente,

m = \ \frac{I_2 - I_1}{q_2 - q_1}
= \ \frac{338 - 130}{13 - 5}
= \ \frac{208}{8}
= \ 26

Posteriormente aplicamos la ecuación punto-pendiente, escogiendo el punto de nuestra preferencia. Usemos el punto P_1

(I - I_1) = m \cdot (q - q_1)
\Rightarrow \ (I - 130) = 26 \cdot (q - 5)
\Rightarrow \ I - 130 = 26 \cdot q - 130
\Rightarrow \ I = 26 \cdot q - 130 + 130
\Rightarrow \ I = 26 \cdot q

La recta que pasa por los puntos P_1 y P_2 es llamada la Ecuación Lineal de Ingresos Totales. Este tipo de ecuaciones siempre tendrá pendiente positiva y su gráfica será una recta creciente.

Ecuación Lineal de Ingresos Totales | totumat.com

Para determinar el ingreso generado por la venta de 10 pares de zapatos para dama, debemos considerar la ecuación lineal de ingresos totales y sustituir el valor q=10 en ella, de la siguiente forma

I = 26 \cdot (10) = 260

Por lo tanto, el ingreso generado por la venta de 10 pares de zapatos para dama es de 260 Ps.