¿La fórmula cuadrática de Po-Shen Loh?

  1. Perdón, ¿quién?
  2. ¡Los babilonios tenían el secreto!
  3. La nueva deducción de la fórmula…
    1. Ejemplos
      1. Ejemplo 1
      2. Ejemplo 2
      3. Ejemplo 3

El Doctor en Matemáticas Po-Shen Loh, ha descubierto una nueva forma — ¡más simple! — para deducir la fórmula cuadrática y así calcular la solución de las ecuaciones cuadráticas, es decir, aquellas que se expresan de la forma Ax^2+ Bx+C=0. Esta fórmula ha estado frente a nuestras narices.

Anuncios

Perdón, ¿quién?

Po-Shen, quien obtuvo su título como matemático en el Instituto de Tecnología de California (Caltech), su maestría en la universidad de Cambridge y finalmente su doctorado en Princeton en el año 2009, ha trabajado arduamente en el desarrollo de nuevas técnicas para la enseñanza de las matemáticas. Es el fundador de la plataforma gratuita de aprendizaje personalizado expii.com, una empresa social respaldada por su serie de cursos de matemáticas en línea, es profesor de matemáticas en la Universidad Carnegie Mellon y entrenador nacional del equipo de la Olimpiada Internacional de Matemáticas de EE. UU.

¡Los babilonios tenían el secreto!

De acuerdo con lo publicado por Po-Shen en su artículo y lo relatado por el MIT technology review, los babilonios encontraron la ahora famosa fórmula cuadrática para ahorrarse en la engorrosa tarea de pagar impuestos. Particularmente el problema que tenían los babilonios que trabajaban con cultivos fue: dada una factura de impuestos que debe pagarse sobre los cultivos, ¿en cuánto debería aumentar el tamaño de mi campo para pagarla?

Entonces, tomando en cuenta un cultivo cuadrado (o en su defecto rectangular), si el tamaño de este es desconocido se presentará inevitablemente una ecuación cuadrática expresada de la forma Ax^2 +Bx+C=0 y su solución se calcula con la siguiente fórmula:

\displaystyle \frac{-B \pm \sqrt{B^2 - 4 \cdot A \cdot C}}{2 \cdot A}

Anuncios
Anuncios
Anuncios

La nueva deducción de la fórmula…

Po-Shen partió del hecho que si una ecuación cuadrática de la forma x^2 + Bx + C = 0 tiene dos soluciones R y S, entonces podemos factorizar y reescribir la expresión que la define como sigue:

\displaystyle x^2 + Bx + C = (x-R)(x-S)

A partir de aquí utiliza una técnica archiconocida y es que, al presentarse una ecuación de la forma x^2 + Bx + C = 0, ésta puede factorizarse hallando dos números que sumados sean igual a B y multiplicados sean igual a C. De esta forma, tenemos las siguientes igualdades:

R+S = -B

R \cdot S = C

Añadimos el hecho de que la suma de dos números es exactamente -B cuando el promedio de estos es -\frac{B}{2}. Así, R y S deben ser dos números de la forma -\frac{B}{2} \pm z, donde z es un número arbitrario. Entonces, como el producto de esta forma debe ser igual a C, existe una equivalencia entre las siguientes expresiones:

R \cdot S = C

(-\frac{B}{2} + z) \cdot (-\frac{B}{2} - z) = C

(-\frac{B}{2})^2 - z^2 = C

\frac{B^2}{4} - z^2 = C

- z^2 = C - \frac{B^2}{4}

z^2 = \frac{B^2}{4} -C

z = \pm \sqrt{ \frac{B^2}{4} -C}

Entonces, como en un principio hemos dicho que R y S son las soluciones de nuestra ecuación cuadrática, entonces al sustituir z en la expresión -\frac{B}{2} \pm z concluimos que la solución de la ecuación cuadrática x^2 + Bx + C = 0 viene dada por

\displaystyle -\frac{B}{2} \pm \sqrt{\frac{B^2}{4}-C}

Veamos como aplicar esta fórmula cuando se nos presenta una ecuación cuadrática.

Anuncios
Anuncios
Anuncios

Ejemplos

Ejemplo 1

Calcule los valores de x que safistacen la siguiente ecuación cuadrática:

x^2 + 5x+6 = 0

Identificando los coeficientes B=5 y C=6, entonces la solución de esta ecuación viene dada de la siguiente forma

-\dfrac{B}{2} \pm \sqrt{\dfrac{B^2}{4}-C}

= -\dfrac{5}{2} \pm \sqrt{\dfrac{5^2}{4}-6}

= -\dfrac{5}{2} \pm \sqrt{\dfrac{25}{4}-6}

= -\dfrac{5}{2} \pm \sqrt{\dfrac{25-24}{4}}

= -\dfrac{5}{2} \pm \sqrt{\dfrac{1}{4}}

= -\dfrac{5}{2} \pm \dfrac{1}{2}

Solución (1):

= -\dfrac{5}{2} + \dfrac{1}{2}

= \dfrac{-5+1}{2}

= \dfrac{-4}{2}

= -2

Solución (2):

= -\dfrac{5}{2} - \dfrac{1}{2}

= \dfrac{-5-1}{2}

= \dfrac{-6}{2}

= -3

De esta forma, concluimos que la solución de la ecuación cuadrática x^2 + 5x+6 viene dada por x = -2 y x = -3.

Anuncios
Anuncios
Anuncios

Ejemplo 2

Calcule los valores de x que safistacen la siguiente ecuación cuadrática:

3x^2 +9x-12 = 0

Debemos notar que si el coeficiente A es distinto de 1 tal como se presenta en este ejemplo, es conveniente sacarlo como factor común para obtener la fórmula 3(x^2 +3x-4) = 0 y entonces, consideramos los coeficientes B=3 y C=-4 de nuestro nuevo factor.

-\dfrac{B}{2} \pm \sqrt{\dfrac{B^2}{4}-C}

= -\dfrac{3}{2} \pm \sqrt{\dfrac{3^2}{4}-(-4)}

= -\dfrac{3}{2} \pm \sqrt{\dfrac{9}{4}+4}

= -\dfrac{3}{2} \pm \sqrt{\dfrac{9+16}{4}}

= -\dfrac{3}{2} \pm \sqrt{\dfrac{25}{4}}

= -\dfrac{3}{2} \pm \dfrac{5}{2}

Solución (1):

= -\dfrac{3}{2} + \dfrac{5}{2}

= \dfrac{-3+5}{2}

= \dfrac{2}{2}

= 1

Solución (2):

= -\dfrac{3}{2} - \dfrac{5}{2}

= \dfrac{-3-5}{2}

= \dfrac{-8}{2}

= -4

De esta forma, concluimos que la solución de la ecuación cuadrática 3x^2 +9x-12 = 0 viene dada por x = 1 y x = -4.

Anuncios
Anuncios
Anuncios

Ejemplo 3

Calcule los valores de x que safistacen la siguiente ecuación cuadrática:

-x^2 +7x-10 = 0

Debemos notar que si el coeficiente A es distinto de 1 tal como se presenta en este ejemplo, es conveniente sacarlo como factor común para obtener la fórmula -(x^2 -7x+10) = 0 y entonces, consideramos los coeficientes B=-7 y C=10 de nuestro nuevo factor.

= -\dfrac{B}{2} \pm \sqrt{\dfrac{B^2}{4}-C}

= -\dfrac{-7}{2} \pm \sqrt{\dfrac{(-7)^2}{4}-10}

= \dfrac{7}{2} \pm \sqrt{\dfrac{49}{4}-10}

= \dfrac{7}{2} \pm \sqrt{\dfrac{49-40}{4}}

= \dfrac{7}{2} \pm \sqrt{\dfrac{9}{4}}

= \dfrac{7}{2} \pm \dfrac{3}{2}

Solución (1):

= \dfrac{7}{2} + \dfrac{3}{2}

= \dfrac{7+3}{2}

= \dfrac{10}{2}

= 5

Solución (2):

= \dfrac{7}{2} - \dfrac{3}{2}

= \dfrac{7-3}{2}

= \dfrac{4}{2}

= 2

De esta forma, concluimos que la solución de la ecuación cuadrática -x^2 +7x-10 = 0 viene dada por x=5 y x=2.


El artículo formal del Dr. Po-Shen Loh fue publicado en Arxiv.org (un repositorio de artículos científicos de la Universidad de Cornell que cuenta hasta la fecha con 1.628.829 artículos en los campos de física, matemática, informática, biología cuantitativa, finanzas cuantitativas, estadística, ingeniería eléctrica y ciencia de sistemas, y economía) y puede consultarse en el siguiente enlace: https://arxiv.org/abs/1910.06709

Anuncio publicitario

La Ecuación Cuadrática y la Fórmula Cuadrática

  1. La ecuación cuadrática
  2. El discriminante
  3. La fórmula cuadrática
  4. Ejemplos
    1. Ejemplo 1
    2. Ejemplo 2
    3. Ejemplo 3
      1. Ejemplo 3 – Una forma alternativa
    4. Ejemplo 4
    5. Ejemplo 5
  5. Algunos memes relacionados con la fórmula cuadrática

La ecuación cuadrática

Si a, b y c son números reales, definimos una ecuación cuadrática como una ecuación que se puede expresar de la forma:

ax^2+bx+c=0

Diremos que a, b y c son los coeficientes de la ecuación, siendo a el coeficiente principal y c el término independiente.

El discriminante

Habiendo definido los coeficientes de una ecuación cuadrática de la forma ax^2+bx+c, definimos el discriminante de dicha ecuación como la expresión b^2-4 \cdot a \cdot c. Éste número nos sirve como un indicador sobre la cantidad de soluciones que tiene nuestra ecuación original, de la siguiente manera:

  • Si el discriminante es mayor que cero, es decir, b^2-4 \cdot a \cdot c > 0, entonces la ecuación tiene dos soluciones.
  • Si el discriminante es igual a cero, es decir,Si b^2-4 \cdot a \cdot c = 0, entonces la ecuación tiene una solución.
  • Si el discriminante es menor que cero, es decir, b^2-4 \cdot a \cdot c < 0, entonces la ecuación no tiene solución.

La fórmula cuadrática

A partir del discriminante podemos establecer un método que nos permite calcular con exactitud la solución de la ecuación ax^2+bx+c que consiste en usar la siguiente fórmula que definirá el valor de la incógnita x:

\displaystyle \dfrac{-b \pm \sqrt{b^2-4 \cdot a \cdot c}}{2 \cdot a}

A esta fórmula se le conoce como la Fórmula Cuadrática y su aplicación se conoce como el Método del Discriminante. Veamos en los siguientes ejemplos cómo aplicar el Método del Discriminante para calcular la solución de algunas ecuaciones cuadráticas, primero identificando los coeficientes de cada una y posteriormente usando la fórmula cuadrática.


Nota: La fórmula cuadrática, es conocida en distintos países de forma coloquial. En algunos es conocida como La Resolvente y en otros, es conocida como La Chicharronera.


También pudiera interesarte

Anuncios

Ejemplos

Ejemplo 1

Calcule los valores de x que satisfacen la siguiente ecuación cuadrática: x^2+5x+6=0.

Para empezar, debemos notar que el término x^2 no tiene antepuesto ningún coeficiente, esto quiere decir que está multiplicado por uno, ya que x^2 = 1 \cdot x^2. Así, tenemos que a=1, b=5 y c=6. Entonces,

x = \dfrac{-b \pm \sqrt{b^2-4 \cdot a \cdot c}}{2 \cdot a}

= \dfrac{-5 \pm \sqrt{5^2-4 \cdot 1 \cdot 6}}{2 \cdot 1}

= \dfrac{-5 \pm \sqrt{25-24}}{2}

= \dfrac{-5 \pm \sqrt{1}}{2}

= \dfrac{-5 \pm 1}{2}

A partir de esta última igualdad tenemos dos situaciones, el signo \pm indica que hay dos operaciones: una suma y una resta. Por lo tanto tendremos dos soluciones como sigue:

x = \dfrac{-5 + 1}{2}

= \dfrac{-4}{2}

= -2

x = \dfrac{-5 - 1}{2}

= \dfrac{-6}{2}

= -3

Así, x=-2 ó x=-3 son las dos soluciones de la ecuación x^2+5x+6=0. Notemos que existen dos soluciones pues el discriminante, b^2-4 \cdot a \cdot c = 1, es mayor que cero.

Ejemplo 2

Calcule la solución de la siguiente ecuación cuadrática: x^2+2x-8=0.

Para empezar, debemos notar que el término x^2 no tiene antepuesto ningún coeficiente, esto quiere decir que está multiplicado por uno, ya que x^2 = 1 \cdot x^2. Así, tenemos que a=1, b=2 y c=-8. Entonces,

x = \dfrac{-b \pm \sqrt{b^2-4 \cdot a \cdot c}}{2 \cdot a}

= \dfrac{-2 \pm \sqrt{2^2-4 \cdot 1 \cdot (-8)}}{2 \cdot 1}

= \dfrac{-2 \pm \sqrt{4+32}}{2}

= \dfrac{-2 \pm \sqrt{36}}{2}

= \dfrac{-2 \pm 6}{2}

Entonces, sumamos para calcular una solución y restamos para calcular la otra:

x = \dfrac{-2 + 6}{2}

= \dfrac{4}{2}

= 2

x = \dfrac{-2 - 6}{2}

= \dfrac{-8}{2}

= -4

Así, x=2 ó x=-4 son las dos soluciones de la ecuación x^2+2x-8=0. Notemos que existen dos soluciones pues el discriminante, b^2-4 \cdot a \cdot c = 36, es mayor que cero.

Anuncios
Anuncios
Anuncios

Ejemplo 3

Calcule la solución de la siguiente ecuación cuadrática: 5x^2-15x-50=0.

Para empezar, debemos notar que a diferencia de los ejemplos anteriores, el término x^2 tiene antepuesto el número cinco. Así, tenemos que a=5, b=-15 y c=-50. Entonces,

x = \dfrac{-b \pm \sqrt{b^2-4 \cdot a \cdot c}}{2 \cdot a}

= \dfrac{-(-15) \pm \sqrt{(-15)^2-4 \cdot (5) \cdot (-50)}}{2 \cdot 5}

= \dfrac{15 \pm \sqrt{225+1000}}{10}

= \dfrac{15 \pm \sqrt{1225}}{10}

= \dfrac{15 \pm 35}{10}

Entonces, sumamos para calcular una solución y restamos para calcular la otra:

x = \dfrac{15 + 35}{10}

= \dfrac{50}{10}

= 5

x = \dfrac{15 - 35}{10}

= \dfrac{-20}{10}

= -2

Así, x=5 ó x=-2 son las dos soluciones de la ecuación 5x^2-15x-50=0. Notemos que existen dos soluciones pues el discriminante, b^2-4 \cdot a \cdot c = 49, es mayor que cero.

Ejemplo 3 – Una forma alternativa

Por otra parte, notemos que 5 es un factor común en cada uno de los sumandos, entonces, si sacamos 5 como un factor común, tenemos que 5(x^2-3x-10)=0, entonces, calculamos las raíces de la siguiente forma:

x = \dfrac{-b \pm \sqrt{b^2-4 \cdot a \cdot c}}{2 \cdot a}

= \dfrac{-(-3) \pm \sqrt{(-3)^2-4 \cdot 1 \cdot (-10)}}{2 \cdot 1}

= \dfrac{3 \pm \sqrt{9+40}}{2}

= \dfrac{3 \pm \sqrt{49}}{2}

= \dfrac{3 \pm 7}{2}

Entonces, sumamos para calcular una solución y restamos para calcular la otra:

x = \dfrac{3 + 7}{2}

= \dfrac{10}{2}

= 5

x = \dfrac{3 - 7}{2}

= \dfrac{-4}{2}

= -2

Así, x=5 ó x=-2 son las dos soluciones de la ecuación 5x^2-15x-50=0. Notemos que existen dos soluciones pues el discriminante, b^2-4 \cdot a \cdot c = 49, es mayor que cero.

Ejemplo 4

Calcule la solución de la siguiente ecuación cuadrática: 3x^2+12x+12=0.

Tenemos que a=3, b=12 y c=12. Entonces,

x = \dfrac{-b \pm \sqrt{b^2-4 \cdot a \cdot c}}{2 \cdot a}

= \dfrac{-(12) \pm \sqrt{(12)^2-4 \cdot (3) \cdot (12)}}{2 \cdot 3}

= \dfrac{-12 \pm \sqrt{144-144}}{6}

= \dfrac{-12 \pm 0}{6}

Entonces, sumamos para calcular una solución y restamos para calcular la otra:

x = \dfrac{-12 + 0}{6}

= -2

x = \dfrac{-12 - 0}{6}

= -2

Así, x=-2 es la única solución de la ecuación 3x^2+12x+12=0. Notemos que sólo existe una solución pues el discriminante, b^2-4 \cdot a \cdot c = 0, es igual a cero.

Anuncios
Anuncios
Anuncios

Ejemplo 5

Calcule la solución de la siguiente ecuación cuadrática: 7x^2-2x+6=0.

Tenemos que a=7, b=-2 y c=6. Entonces,

x = \dfrac{-b \pm \sqrt{b^2-4 \cdot a \cdot c}}{2 \cdot a}

= \dfrac{-(-2) \pm \sqrt{(-2)^2-4 \cdot (7) \cdot (6)}}{2 \cdot 7}

= \dfrac{2 \pm \sqrt{4-168}}{14}

= \dfrac{2 \pm \sqrt{-164}}{14}

No es posible calcular en los números reales la raúz cuadrada de un número negativo, por lo tanto, concluimos que la ecuación 7x^2-2x+6=0 no tiene solución en los números reales. Notemos que no existe la solución pues el discriminante, b^2-4 \cdot a \cdot c = -164, es menor que cero.


Algunos memes relacionados con la fórmula cuadrática

Cuando le dices «el método del discriminante» en vez de «la resolvente».

Moe de los simpsons diciendo ulala señor francés | totumat.com