Introducción a las Ecuaciones Cuadráticas

  1. Una sola ecuación, ¿con dos soluciones?
  2. Un caso general

Una sola ecuación, ¿con dos soluciones?

Cuando citamos el Teorema de Pitágoras para definir los Números Reales, nos encontramos con la siguiente ecuación c^2 = 2, donde c es nuestra incógnita y aunque pudimos «inventar» un nuevo número llamado \sqrt{2} para definir el valor de nuestra incógnita; la tarea de encontrar la solución para este tipo de situaciones no es trivial. Es por esto que debemos establecer un método general que para proceder en estos casos.

Anuncios

Consideremos la siguiente ecuación, en la que la incógnita está elevada al cuadrado:

x^2 - 4 = 0

Notemos que esta no es una ecuación lineal, debemos tener en cuenta ciertos detalles para calcular la solución. Sin embargo, podemos notar que (2)^2 es igual a 4. Por lo tanto, al considerar x=2 y sustituyendo este valor en la ecuación, obtenemos lo siguiente:

(2)^2 - 4 = 4 - 4 = 0

Es decir, x=2 provee una solución para la ecuación que hemos planteado, pero, esta no es la única solución.

Hay otra solución para esta ecuación, pues podemos notar que (-2)^2 también es igual a 4. Por lo tanto, al considerar x=-2 y sustituyendo este valor en la ecuación, obtenemos lo siguiente:

(-2)^2 - 4 = 4 - 4 = 0

Es decir, x=-4 también provee una solución para la ecuación que hemos planteado.

Es posible establecer un método para calcular estas dos soluciones con un simple despeje partiendo de nuestra ecuación original: x^2 - 4 = 0 pues sí sumamos 4 en ambos lados de la ecuación, obtenemos la siguiente ecuación

\ x^2 = 4

¿Qué hacemos en este caso? Aplicaremos la raíz cuadrada en ambos lados de la desigualdad para obtener la siguiente ecuación.

\sqrt{x^2} = \sqrt{4}

\Rightarrow \ \sqrt{x^2} = 2

Y en este punto debemos tomar en cuenta un «tecnicismo matemático», y es que la distancia entre un número x y el número cero puede definirse como \sqrt{x^2}. De esta forma, tenemos dos valores para los cuales la distancia entre x y cero es exactamente igual a dos, esto es x=2 ó x=-2.

En vista de esto, la última ecuación que hemos planteado se puede expresar de la siguiente manera:

x = \pm 2

Es decir, la solución para la ecuación x^2 - 4 = 0 es x = 2 ó x=-2, tal como lo habíamos intuido.

Anuncios
Anuncios
Anuncios

Un caso general

Podemos generalizar este procedimiento para cualquier ecuación de la forma

ecuación cuadrática con coeficiente b igual a cero | totumat.com

Pues partiendo de esta ecuación, podemos sumar c en ambos lados de la ecuación pero para aligerar el trabajo simplemente diremos que si c está restando de un lado de la igualdad, pasará a sumar en el otro lado (recordando que esto es consecuencia de los Axiomas Algebraicos de los Números Reales).

ax^2= c

Podemos dividir por a en ambos lados de la ecuación pero para aligerar el trabajo simplemente diremos que si a está multiplicando de un lado de la igualdad, pasará a dividir en el otro lado (recordando que esto es consecuencia de los Axiomas Algebraicos de los Números Reales).

x^2= \dfrac{c}{a}

\Rightarrow \ \sqrt{x^2}= \sqrt{\dfrac{c}{a}}

\Rightarrow \ |x|= \sqrt{\dfrac{c}{a}}

\Rightarrow \ x = \pm \sqrt{\dfrac{c}{a}}

Finalmente, la solución de esta ecuación será x = \sqrt{\frac{c}{a}} ó x = - \sqrt{\frac{c}{a}}. Aunque debemos tomar en cuenta que esta ecuación tendrá solución solamente si \frac{c}{a} es un número positivo, ya que si \frac{c}{a} es un número negativo, la ecuación no tendrá solución pues la raíz cuadrada de un número negativo no está definida. Veamos hora un ejemplo particular de este tipo de ecuaciones:

3x^2 - 27 = 0

\Rightarrow \ 3x^2 = 27

\Rightarrow \ x^2 = \dfrac{27}{3}

\Rightarrow \ x^2 = 9

\Rightarrow \ \sqrt{x^2} = \sqrt{9}

\Rightarrow \ |x| = 3

\Rightarrow \ x = \pm 3

Por lo tanto, la solución de esta ecuación viene dada por x=3 ó x=-3.


Mire equis, yendo a la raíz del problema, le aconsejo que asuma su naturaleza y acepte vivir con sus dos facetas, la positiva y la negativa.

TROFEA 2011 | totumat.com
Anuncio publicitario

Resolución de Ecuaciones Lineales

  1. ¿Cómo se despeja la incógnita x?
    1. Ejemplos
      1. Ejemplo 1
      2. Ejemplo 2
      3. Ejemplo 3
      4. Ejemplo 3 – Otra forma
  2. Video Complementario

¿Cómo se despeja la incógnita x?

Para calcular la solución de una ecuación lineal, debemos despejar la incógnita, esto es aplicar los axiomas algebraicos de los números reales de forma secuencial para que nuestra incógnita «se quede sola» en un sólo lado de la igualdad en la ecuación planteada.

Entonces, si considerando tres números reales a, b y c; veremos en algunos ejemplos cómo despejar la incógnita partiendo de la siguiente forma básica de una ecuación lineal,

ax + b = c

También pudiera interesarte

Anuncios

Nota: Al ser la técnica de despeje un proceso lógico-deductivo, usaremos una flecha con dos rayas (\Longrightarrow) para denotar que una ecuación se ha deducido de la anterior. Dicha flecha se lee «implica que».


Ejemplos

Ejemplo 1

Calcule la solución de la ecuación 5x+10 = 20 despejando la incógnita x.

5x+10 = 20

Esta es nuestra ecuación original. Identificamos la incógnita x en lado izquierdo de la igualdad. Que está multiplicada por 5 y posteriormente sumanda por 10.

\Longrightarrow \ 5x+10-10 = 20-10

Queremos anular el 10 que está sumando en el lado izquierdo de la igualdad. Entonces, restamos por 10 en ambos lados, de esta forma no se altera la igualdad.

\Longrightarrow \ 5x+0 = 10

Al ser 10 y -10 opuestos aditivos, la suma entre ellos dos es exactamente igual a cero.

\Longrightarrow \ 5x = 10

Al sumar 5x más cero, el resultado es 5x. Esto se debe a que el cero es el elemento neutro de la suma.

\Longrightarrow \ \dfrac{1}{5} \cdot 5x = \dfrac{1}{5} \cdot 10

Queremos simplificar el 5 que está multiplicando en el lado izquierdo de la igualdad. Entonces, multiplicamos por \frac{1}{5} en ambos lados de la igualdad.

\Longrightarrow \ 1 \cdot x = 2

Al ser 5 y \frac{1}{5} inversos multiplicativos, el producto entre ellos es exactamente igual a uno.

\Longrightarrow \ x = 2

Finalmente, obtenemos el valor de x que satisface la ecuación original.

Anuncios
Anuncios
Anuncios

Ejemplo 2

Calcule la solución de la ecuación -3x+20 = 5 despejando la incógnita x.

-3x+20 = 5

Esta es nuestra ecuación original. Identificamos la incógnita x en lado izquierdo de la igualdad. Que está multiplicada por -3 y posteriormente sumanda por 20.

\Longrightarrow \ -3x+20 -20 = 5 -20

Queremos anular el 20 que está sumando en el lado izquierdo de la igualdad. Entonces, restamos por 20 en ambos lados, de esta forma no se altera la igualdad.

\Longrightarrow \ -3x+0 = -15

Al ser 20 y -20 opuestos aditivos, la suma entre ellos dos es exactamente igual a cero.

\Longrightarrow \ -3x = -15

Al sumar -3x más cero, el resultado es -3x. Esto se debe a que el cero es el elemento neutro de la suma.

\Longrightarrow \ \dfrac{1}{-3} \cdot (-3)x = \dfrac{1}{-3} \cdot (-15)

Queremos simplificar el -3 que está multiplicando en el lado izquierdo de la igualdad. Entonces, multiplicamos por \frac{1}{-3} en ambos lados de la igualdad.

\Longrightarrow \ 1 \cdot x = 5

Al ser 5 y \frac{1}{5} inversos multiplicativos, el producto entre ellos es exactamente igual a uno.

\Longrightarrow \ x = 5

Finalmente, obtenemos el valor de x que satisface la ecuación original.


En el siguiente ejemplo notaremos que en ambos lados de la ecuación se presentan expresiones que involucran a la incógnita x, es por esto que será necesario agrupar las expresiones que involucran a x en un lado de la igualdad (preferiblemente en lado izquierdo) y todas las expresiones que no involucran a x del otro lado de la igualdad (preferiblemente el lado derecho).

Finalmente, nos daremos cuenta que debemos usar la propiedad distributiva para poder efectuar operaciones entre las expresiones que involucran a la incógnita x.

Ejemplo 3

Calcule la solución de la ecuación 10x+7 = 4x - 11 despejando la incógnita x.

10x+7 = 4x - 11

Esta es nuestra ecuación original. Identificamos la incógnita x en lado izquierdo de la igualdad, que está multiplicada por -3 y posteriormente sumanda por 20. E identificamos la incógnita x en lado derecho de la igualdad, que está multiplicada por 4 y posteriormente restada por 11.

\Longrightarrow \ 10x+7-7 = 4x - 11-7

Queremos anular el 7 que está sumando en el lado izquierdo de la igualdad. Entonces, restamos por 7 en ambos lados, de esta forma no se altera la igualdad.

\Longrightarrow \ 10x+0 = 4x -18

Al ser 7 y -7 opuestos aditivos, la suma entre ellos dos es exactamente igual a cero.

\Longrightarrow \ 10x+0 = 4x -18

Al ser 7 y -7 opuestos aditivos, la suma entre ellos dos es exactamente igual a cero.

\Longrightarrow \ 10x = 4x -18

Al sumar 10 más cero, el resultado es 10x. Esto se debe a que el cero es el elemento neutro de la suma.

\Longrightarrow \ -4x+10x = -4x+ 4x -18

Queremos anular el 4x que está sumando en el lado derecho de la igualdad. Entonces, restamos por 4x en ambos lados, de esta forma no se altera la igualdad.

\Longrightarrow \ -4x+10x = 0 -18

Al ser 4x y -4x opuestos aditivos, la suma entre ellos dos es exactamente igual a cero.

\Longrightarrow \ -4x+10x = -18

Al restar cero menos 18, el resultado es 18. Esto se debe a que el cero es el elemento neutro de la suma.

\Longrightarrow \ (-4+10)x = -18

Para sumar los términos que multiplican a equis, aplicamos la propiedad distributiva, notando que x es un factor común.

\Longrightarrow \ 6x = -18

Sumamos los elementos que están dentro del paréntesis para obtener 6x.

\Longrightarrow \ \dfrac{1}{6} \cdot 6x = \dfrac{1}{6} \cdot (-18)

Queremos simplificar el 6 que está multiplicando en el lado izquierdo de la igualdad. Entonces, multiplicamos por \frac{1}{6} en ambos lados de la igualdad.

\Longrightarrow \ 1 \cdot x = -3

Al ser 6 y \frac{1}{6} inversos multiplicativos, el producto entre ellos es exactamente igual a uno.

\Longrightarrow \ x = -3

Finalmente, obtenemos el valor de x que satisface la ecuación original.


Anuncios
Anuncios
Anuncios

Mientras se está aprendiendo a calcular la solución de una ecuación lineal, es necesario seguir cada uno de los pasos para comprender la esencia de las operaciones que se hacen para poder abordar problemas más complejos en el futuro.

Sin embargo, a medida que nos vamos adiestrando en la resolución de ecuaciones lineales, podremos prescindir de algunos pasos para poder hallar la solución con mayor rapidez, por supuesto, siempre tomando en cuenta el trasfondo de los Axiomas Algebraicos que se están aplicando.

Entonces, podemos abusar de las operaciones y decir que «lo que está sumando de un lado de la igualdad, pasa a restar y lo que está restando de un lado de la ecuación, pasa a sumar«, también podemos decir que «lo que está multiplicando de un lado de la igualdad, pasa a dividir y lo que está dividiendo de un lado de la ecuación, pasa a multiplicar«. Así, éste último ejemplo se puede abordar de la siguiente forma:

Ejemplo 3 – Otra forma

Calcule la solución de la ecuación 10x+7 = 4x - 11 despejando la incógnita x.

10x+7 = 4x - 11

Esta es nuestra ecuación original.

\Rightarrow \ 10x = 4x - 11-7

El siete que está sumando en el lado izquierdo del igualdad, pasa a restar en el lado derecho de la igualdad.

\Rightarrow \ 10x = 4x - 18

Menos once menos siente es igual a menos dieciocho.

\Rightarrow \ 10x -4x = - 18

El cuatro equis que está sumando de lado derecho de la igualdad, pasa a restar en el lado izquierdo de la igualdad.

\Rightarrow \ 6x = - 18

Diez equis menos cuatro equis es igual a seis equis.

\Rightarrow \ x = -\dfrac{18}{6}

El seis que está multiplicando a equis en el lado izquierdo de la igualdad, pasa a dividir a menos dieciocho en el lado derecho de la igualdad.

\Rightarrow \ x = -3

Finalmente, menos dieciocho entre seis es igual a menos tres.


Video Complementario