Las mejores calculadoras online | totumat.com review

The best online calculators in 2020

When studying subjects that require complicated calculations, there is nothing better than having a good calculator. Although having a calculator in physical is very comfortable, it is not always accessible, which is why we must resort to online options, either surfing the web or as applications for the phone.

My recommendation for my students is to always study accompanied by a calculator, so they can check if they are doing the necessary calculations correctly.

Let’s see then, a list without a particular order (just kidding, they are ordered from the best to the worst) of the best calculators that we can get browsing the internet or in the store of applications of different operating systems.

Anuncios

Wolfram Alpha

With no doubt, Wolfran Alpha is the king of online calculators because its calculations are not only based on algorithms as traditional calculators do, but on innovative algorithms, knowledge base and artificial intelligence technology.

Nota: According to Atlassian, A knowledge base is a self-serve online library of information about a product, service, department, or topic. The data in your knowledge base can come from anywhere. Typically, contributors who are well versed in the relevant subjects add to and expand the knowledge base.

Performing a calculation in Wolfram Alpha not only provides the solution to the calculation, but also provides additional information usually needed when performing calculations. You can see the entire development step by step to reach the final result by paying a subscription, but it is not mandatory if you only want results.

Wolfram Alpha | totumat.com review

Wolfram Alpha is available for free at wolframalpha.com and for a fee at iOS, Android and Microsoft.

Anuncios

Calculator N+

My daily use calculator is the Android Calculator N+ application. It is an open source calculator, developed by Trần Lê Duy who, according to his github profile, is a student at Nguyen Binh Khiem High School who loves to study algorithms.

Note: open source commonly refers to software that uses an open development process and is licensed to include source code.

This calculator provides results only, without procedures, but the amount of functions that can be applied is immense. I think the only defect it has (for now), is that it does not have a function finder in the home screen calculator.

In addition to the home screen calculator, this application has specific calculators to work with Equations, Derivatives, Integrals and Matrices, among others; this is what extends its versatility and comfort.

Calculator N+ | totumat.com review
Calculator N+ | totumat.com review
Calculator N+ | totumat.com review

Calculator N+ is only available for Android, however, being open source, it can be built from your code following the instructions in GitHub.

Anuncios

GeoGebra

GeoGebra is a multifunctional platform of didactic support that deserves a whole article to be able to expose everything it offers, however, this time we will only focus on the calculator it provides.

The strength of GeoGebra lies in the graphical representations of Functions, Equations and Inequations, or generally, the interaction between two variables (although its application for 3D graphics generalizes these aspects), however, it also allows the calculation of derivatives and integrals.

Graphic representations can be customized to clearly illustrate which elements are involved in the calculations being performed.

GeoGebra | totumat.com review

The full range of applications provided by GeoGebra is available at GeoGebra.com, iOS and Android.

Anuncios

Mathway

Mathway is a calculator with a simple but very versatile interface when making calculations, because as Wolfram Alpha, it is based on innovative algorithms and artificial intelligence.

Although you can use the buttons of the application to make the calculations, you can set the instructions and obtain the results.

Mathway | totumat.com review
Mathway | totumat.com review
Mathway | totumat.com review

Like Wolfram Alpha, you can see the complete development step by step to reach the final result paying a subscription, but it is not mandatory if we only want results.

Mathway is available at Mathway.com, iOS and Android.

Anuncios

Symbolab

Symbolab is the son of Wolfram Alpha and Mathway, haha, because it provides similar functionalities to both calculators and its interface also a mixture of both (but with more ads), however, it is equally comfortable to use.

Symbolab | totumat.com review

Like Wolfram Alpha, you can see the complete development step by step to reach the final result paying a subscription, but it is not mandatory if we only want results.

Symbolab is available at symbolab.com, iOS and Android.


Las mejores calculadoras online | totumat.com review

Las mejores calculadoras online en 2020

Cuando se estudian asignaturas que requieren de cálculos complicados, nada mejor que contar con una buena calculadora. Si bien tener una calculadora en físico resulta muy cómodo, no siempre se cuenta con acceso a ellas, es por esto que debemos recurrir a opciones online, ya sean surfeando en la web o como aplicaciones para el teléfono.

Mi recomendación para mis alumnos es que siempre estudien acompañados de una calculadora, para que verifiquen si están haciendo correctamente los cálculos necesarios.

Veamos entonces, una lista sin un orden particular (falso, están ordenadas desde la mejor hasta la peor) de las mejores calculadoras que podemos conseguir navegando por internet o en la tienda de aplicaciones de distintos sistemas operativos.

Anuncios

Wolfram Alpha

Sin duda alguna, Wolfran Alpha es el rey de las calculadoras online pues sus cálculos no se basan únicamente en algoritmos tal como lo hacen las calculadoras tradicionales, si no en algoritmos innovadores, base de conocimientos y tecnología de inteligencia artificial.

Nota: De acuerdo con Atlassian, una base de conocimientos es una biblioteca en línea de autoservicio de información sobre un producto, servicio, departamento o tema. Los datos de su base de conocimientos pueden provenir de cualquier lugar. Por lo general, los colaboradores que están bien versados en los temas relevantes agregan y amplían la base de conocimientos.

Al efectuar un cálculo en Wolfram Alpha, no sólo se provee la solución del mismo sino que además, provee información adicional que usualmente se necesita cuando se efectúan cálculos. Se puede ver el desarrollo completo paso a paso para llegar al resultado final pagando una subscripción, pero no es obligatorio si sólo queremos resultados.

Wolfram Alpha | totumat.com review

Wolfram Alpha está disponible gratuitamente en wolframalpha.com y pagando, en iOS, Android y Microsoft.

Anuncios

Calculator N+

Mi calculadora de uso diario es la aplicación para Android Calculator N+. Es una calculadora open source, desarrollada por Trần Lê Duy que según su perfil de github, es un estudiante de la escuela secundaria Nguyen Binh Khiem que ama estudiar algoritmos.

Nota: open source comúnmente se refiere al software que utiliza un proceso de desarrollo abierto y tiene licencia para incluir el código fuente.

Esta calculadora provee resultados únicamente, sin procedimientos, pero la cantidad de funciones que se pueden aplicar es inmensa. Creo que el único defecto que tiene (por ahora), es que no tiene un buscador de funciones en la calculadora de la pantalla de inicio.

Además de la calculadora de la pantalla de inicio, esta aplicación cuenta con calculadoras específicas para trabajar con Ecuaciones, Derivadas, Integrales y Matrices, entre otras; esto es lo que amplía su versatilidad y comodidad.

Calculator N+ | totumat.com review
Calculator N+ | totumat.com review
Calculator N+ | totumat.com review

Calculator N+ está disponible únicamente para Android, sin embargo, al ser open source, puede ser construida desde su código siguiendo las instrucciones en GitHub.

Anuncios

GeoGebra

GeoGebra es una plataforma multifuncional de apoyo didáctico que merece un artículo entero para poder exponer todo lo que ofrece, sin embargo, en esta ocasión sólo nos enfocaremos en la calculadora que provee.

El fuerte de GeoGebra radica en las representaciones gráficas de Funciones, Ecuaciones e Inecuaciones, o de forma general, la interacción entre dos variables (aunque su aplicación para gráficos en 3D generaliza estos aspectos), sin embargo, también permite el cálculo de derivadas e integrales.

Las representaciones gráficas se pueden pueden personalizar para ilustrar con claridad cuáles son los elementos involucrados en los cálculos que se están efectuando.

GeoGebra | totumat.com review

Toda la gama de aplicaciones que provee GeoGebra está disponible en GeoGebra.com, iOS y Android.

Anuncios

Mathway

Mathway es una calculadora con una interfaz sencilla pero muy versátil a la hora de hacer cálculos, pues al igual que Wolfram Alpha, se basa en algoritmos innovadores e inteligencia artificial.

Si bien se pueden utilizar los botones de la aplicación para efectuar los cálculos, se puede indicar las instrucción (en inglés o español) y posteriormente obtener los resultados.

Mathway | totumat.com review
Mathway | totumat.com review
Mathway | totumat.com review

Al igual que Wolfram Alpha, se puede ver el desarrollo completo paso a paso para llegar al resultado final pagando una subscripción, pero no es obligatorio si sólo queremos resultados.

Mathway está disponible en Mathway.com, iOS y Android.

Anuncios

Symbolab

Symbolab es el hijo de Wolfram Alpha y Mathway, jaja, pues provee funcionalidades parecidas a ambas calculadoras y su interfaz también una mezcla de ambas (pero con más publicidad), sin embargo, es igual cómoda de usar.

Symbolab | totumat.com review

Al igual que Wolfram Alpha, se puede ver el desarrollo completo paso a paso para llegar al resultado final pagando una subscripción, pero no es obligatorio si sólo queremos resultados.

Symbolab está disponible en symbolab.com, iOS y Android.


What is 6÷2(1+2)?

In 2019 a debate went viral, discussing on what is the result of the operation 8÷2(2+2), I thought that it had been forgotten and that the situation had already been clarified. However, it was reborn on the infamous 2020 as 6÷2(1+2).

It is necessary to understand that when considering mixed operations, there is an established order among the operations. First all the products must be made, then all the divisions, then all the additions and finally all the subtractions. Also consider that if there are signs of grouping you must first solve the contents between parentheses ( ), then brackets [ ] and then braces { }; you must make the operations that are within them considering the original hierarchy between operations. This is what people call BODMAS.

Anuncios

Does calculators lie?

6÷2(1+2) on calculator | totumat.com
6÷2(1+2) on calculator | totumat.com

When calculating this operation in a calculator, the results will differ depending on how they have been programmed because some have been programmed to prioritize the order of operations and others have been programmed to prioritize the order of appearance of the operations.

Anuncios

Write it better…

In my opinion, the problem with that specific case is that the person who originally raised it does not have the slightest idea of how to use the grouping signs because when operations between numbers are proposed, they always come from a real problem, so that kind of problems will always be well proposed if they are written correctly. Ambiguity in mathematics should have no place.

This operation defined as it is, is like asking a question without question marks, commas, colons or semicolons.

Anuncios

How to propose the problem?

Case 1

Suppose that you work for a party agency and at a party you have been asked to distribute six pieces of cake to a pair of children, this situation is described with the operation 6÷2. Suppose furthermore that you have to do this twice more, then this situation is described with the following operation (6÷2)×2. If again you are told to do this one more times, then at the end you will describe this with the following operation

(6÷2)×(2+1)
= 3×3
= 9

This means that in the end you will have to distribute 9 pieces of cake.

Case 2

Suppose again that you work at a party agency and you have been given six pieces of cake to distribute to a pair children, this situation is described with operation 6÷2. However, you are being told that now it is not a pair of children but rather two pairs of children, this situation is described with the operation 6÷[2×2]. Finally, you are told that one more pair of children have arrived, so in the end you will describe this with the following operation

6÷[2×(2+1)]
= 6÷[2×3]
= 6÷6
= 1

This means that at the end you will have to give a piece of cake to each child.

In conclusion…

Considering these two cases, we notice that each one has its own approach and interpretation. Always specifying which operations have to be grouped together and always specifying which operations should be carried out first.


What is 8÷2(2+2)?

In 2019 a debate went viral, discussing on what is the result of the operation 8÷2(2+2), I thought that it had been forgotten and that the situation had already been clarified. However, I was asked what the result of this operation was, quoting me on a tweet, and even today, the people who responded are still deciding between 1 and 16.

It is necessary to understand that when considering mixed operations, there is an established order among the operations. First all the products must be made, then all the divisions, then all the additions and finally all the subtractions. Also consider that if there are signs of grouping you must first solve the contents between parentheses (), then brackets [] and then braces {}; you must make the operations that are within them considering the original hierarchy between operations. This is what people call BODMAS.

Anuncios

Does calculators lie?

8÷2(2+2)
Android Calculator.
8÷2(2+2)
“CASIIO” calculator bought at the Chinese Store.

When calculating this operation in a calculator, the results will differ depending on how they have been programmed because some have been programmed to prioritize the hierarchy between operations and others have been programmed to prioritize the order of appearance of the operations.

Anuncios

Write it better…

In my opinion, the problem with that specific case is that the person who originally raised it does not have the slightest idea of how to use the grouping signs because when operations between numbers are proposed, they always come from a real problem, so that kind of problems will always be well proposed if they are written correctly. Ambiguity in mathematics should have no place.

This operation defined as it is, is like asking a question without question marks, commas, colons or semicolons.

Anuncios

How to propose the problem?

Case 1

Suppose that you work for a party agency and at a party you have been asked to distribute eight pieces of cake to a couple of children, this situation is described with the operation 8÷2. Suppose furthermore that you have to do this twice more, then this situation is described with the following operation (8÷2)×2. If again you are told to do this two more times, then at the end you will describe this with the following operation

(8÷2)×(2+2)
= 4×4
= 16

This means that in the end you will have to distribute 16 pieces of cake.

Case 2

Suppose again that you work at a party agency and you have been given eight pieces of cake to distribute to a couple of children, this situation is described with operation 8÷2. However, you are being told that now it is not a pair of children but rather two pairs of children, this situation is described with the operation 8÷(2×2). Finally, you are told that two more pairs of children have arrived, so in the end you will describe this with the following operation

8÷[2×(2+2)]
= 8÷[2×4]
= 8÷8
= 1

This means that at the end you will have to give a piece of cake to each child.

In conclusion…

Considering these two cases, we notice that each one has its own approach and interpretation. Always specifying which operations have to be grouped together and always specifying which operations should be carried out first.


Calculadora Científica | totumat.com

Herramientas Básicas de una Calculadora Científica

En mis años de experiencia docente a nivel universitario, he notado que si bien, la mayoría de los estudiantes tienen acceso a una calculadora científica, el uso que se le da no es mayor del que se le puede dar a una “calculadora bodeguera”, es decir, una de este tipo

MX-12B | Serie con valor agregado | HOGAR | Calculadoras | CASIO

La Calculadora CASIO fx-82MS

La calculadora más común encontrada en las aulas de clases, desde bachillerato hasta el nivel universitario, es la calculadora CASIO fx-82MS. Aunque es sencilla en comparación con otras calculadoras científicas, es muy versátil.

fx-82MS

Aparte de las operaciones de suma, resta, multiplicación y división. Veamos cuales son las operaciones básicas que se pueden efectuar con esta calculadora, pero además, veamos que con conocimientos matemáticos, varias de las opciones se pueden usar para hacer distintos tipos de operaciones.

Anuncios

Fracciones y Decimales

Las operaciones con fracciones o con decimales pueden resultar engorrosas para calcular a mano, afortunadamente, las calculadoras tienen una opción para reescribir fracciones como números decimales y viceversa. Para esto, se debe presionar el siguiente botón:

Este botón, reescribirá los números decimales como fracciones mixtas, particularmente para poder usar la opción correspondiente a las fracciones puras, se debe presionar la tecla SHITF previamente, pues con ella se pueden usar las opciones resaltadas en amarillo sobre cada tecla.

Potencias

El caso en el que más se usa una potencia en los cursos de matemáticas es cuando debemos elevar un número al cuadrado, seguido de esto, cuando debemos elevar un número al cubo. Para esto, existen dos botones dedicados.

Sin embargo, ¿qué haremos si queremos elevar un número a la 4? ¿O a la 10? ¿Y a la 7/5? Para esto, debemos usar el circunflejo… ¿El circunqué? El circunflejo es el signo (^) y de forma general, en el lenguaje matemático compucional, se usa para denotar una potencia.

Usando esta tecla, podemos calcular distintas potencias, de forma que

  • Si queremos calcular 6 elevado a la 4, entonces escribimos
    6^4.
  • Si queremos calcular 2 elevado a la 10, entonces escribimos
    2^10.
  • Si queremos calcular 4 elevado a la 7/5, entonces escribimos
    4^(7/5).

Nótese que en este último caso, se usaron paréntesis para escribir la potencia. Esto es para indicarle a la calculadora que primero debe hacer las operación que está dentro del paréntesis. El uso de los paréntesis para definir operaciones es necesario para no incurrir en errores de cálculo.

Radicales

El caso en el que más se usa un radical en los cursos de matemáticas es cuando debemos calcular la raíz cuadrada, seguido de esto, cuando debemos calcular la raíz cúbica. Para esto, existen dos botones dedicados.

Particularmente para poder usar la opción correspondiente a la raíz cúbica, se debe presionar la tecla SHITF previamente, pues con ella se pueden usar las opciones resaltadas en amarillo sobre cada tecla.

Sin embargo, ¿qué haremos si queremos calcular la raíz cuarta? ¿O a la raíz décima? ¿Y a la sétima de un número elevado a la 5? Para esto, debemos usar presionar SHIFT seguido de el circunflejo (^), pues con esto activamos la expresión \sqrt[x]{ \ }.

Usando esta tecla, podemos calcular distintas raíces, de forma que

  • Si queremos calcular la raíz cuarta de 6, entonces escribimos
    4\sqrt[x]{ \ }6.
  • Si queremos calcular la raíz décima de 2, entonces escribimos
    10\sqrt[x]{ \ }2.
  • Si queremos calcular la raíz quinta de 4 elevado a la 7, entonces escribimos
    5\sqrt[x]{ \ }(4^7).

Nótese que en este último caso, se usaron paréntesis para escribir la potencia. Esto es para indicarle a la calculadora que primero debe hacer las operación que está dentro del paréntesis. El uso de los paréntesis para definir operaciones es necesario para no incurrir en errores de cálculo.

También nos podemos fijar que la raíz quinta de 4 elevado a la 7 también se puede calcular usando 4^(7/5), esto se debe a que de acuerdo a las propiedades de las potencias y radicales, tenemos que

a^{\frac{m}{n}} = \sqrt[n]{a^m}

Anuncios

Logaritmos

Los logaritmos se usan con frecuencia para estudiar cambios proporcionales o porcentuales en conjuntos de datos. Usualmente se considera el logaritmo con base 10 o el logarimo con base \textit{\Large e}, este último conocido como el logaritmo neperiano o logaritmo natural. Para esto, existen dos botones dedicados.

Usando esta tecla, podemos calcular distintos logaritmos, de forma que

  • Si queremos el logaritmo base 10 de 6, entonces escribimos
    log6.
  • Si queremos el logaritmo base 10 de 2 elevado a la 5, entonces escribimos
    log(2^5).
  • Si queremos el logaritmo neperiano de 8, entonces escribimos
    ln8.
  • Si queremos el logaritmo neperiano de la raíz cúbica de 15, entonces escribimos
    ln(\sqrt[3]{ \ }15).

Nótese que en este último caso, se usaron paréntesis para escribir la potencia. Esto es para indicarle a la calculadora que primero debe hacer las operación que está dentro del paréntesis. El uso de los paréntesis para definir operaciones es necesario para no incurrir en errores de cálculo.

Calcular el logaritmo de cualquier base

Usualmente, las calculadoras científicas sólo permiten calcular el logaritmo base diez o el logaritmo neperiano. Sin embargo, debemos recordar la propiedad cambio de base, que indica que

$\log_a(b) = \dfrac{\log_c(b)}{\log_c(a)}$

Entonces, podemos calcular el logaritmo de cualquier base en la calculadora de la siguiente forma:

  • Si queremos el logaritmo base 3 de 2, entonces escribimos
    log2/log3.
  • Si queremos el logaritmo base 9 de 13, entonces escribimos
    log13/log9.
  • Si queremos el logaritmo base 12 de 33, entonces escribimos
    log(33)/log12.
  • Si queremos el logaritmo base 5 de 4+7, entonces escribimos
    log(4+7)/log5.

Exponenciales

Hay una potencia muy particular que debemos calcular con regularidad cuando se hacen desarrollos matemáticos y esta se presenta cuando operamos con la función exponencial. Usualmente se considera la base 10 o la base \textit{\Large e}. Para esto, existen dos botones dedicados.

Para poder usar estas opciones, se debe presionar la tecla SHITF previamente, pues con ella se pueden usar las opciones resaltadas en amarillo sobre cada tecla.

Usando esta tecla, podemos calcular distintas expresiones exponciales, de forma que

  • Si queremos 10 elevado a la 6, entonces escribimos
    10^x6.
  • Si queremos 10 elevado a la 2, entonces escribimos
    10^x2.
  • Si queremos 10 elevado a la 7/3, entonces escribimos
  • 10^x(7/3).
  • Si queremos \textit{\Large e} elevado a la 8, entonces escribimos
    \textit{\Large e}^x8.
  • Si queremos \textit{\Large e} elevado a la 15 + 5, entonces escribimos
    \textit{\Large e}^x(15+5).

Nótese que en este último caso, se usaron paréntesis para escribir la potencia. Esto es para indicarle a la calculadora que primero debe hacer las operación que está dentro del paréntesis. El uso de los paréntesis para definir operaciones es necesario para no incurrir en errores de cálculo.

Para definir directamente el número \textit{\Large e} tenemos dos opciones, podemos escribir \textit{\Large e}^x1 o podemos presionar el siguiente botón

Para poder usar estas opciones, se debe presionar la tecla ALPHA previamente, pues con ella se pueden usar las opciones resaltadas en rojo sobre cada tecla.

Usando esta tecla, podemos calcular distintas expresiones exponciales con base \textit{\Large e}, de forma que

  • Si queremos \textit{\Large e} elevado a la 3, entonces escribimos
    \textit{\Large e}^3.
  • Si queremos \textit{\Large e} elevado a la 1/2, entonces escribimos
    \textit{\Large e}^(1/2).
Anuncios

Guardar un número en la memoria de la calculadora

Al hacer recurrir varias veces un mismo cálculo, resulta engorroso tener que escribir la operación una y otra vez. Afortunadamente, las calculadoras cuentan una opción para guardar números o resultados de operaciones en una calculadora.

La opción STO denota la palabra en inglés storage, que se traduce como almacenamiento en español. La calculadora CASIO fx-82MS tiene seis espacios disponibles para almacenar en su memoria, estos son los correspondientes a A, B, C, D, E y F.

Almacenar un número en la memoria se efectúa en tres pasos sencillos. Supongamos que debe almacenar el número 3 en el espacio de memoria A. Entonces, debe presionar 3, seguido de STO (presionando previamente SHITF), seguido de la tecla correspondiente a A (sin presionar ALPHA):

Posteriormente, deberá aparecer en la pantalla lo siguiente:

3 \rightarrow A

De esta forma, si hacemos el llamado de A (presionando previamente ALPHA), este tendrá almacenado el valor 3. Entonces, si escribimos

7 + A

El resultado será igual a 10, pues es como sumar 7+3.

Aunque no pareciera muy útil para operaciones sencillas, esto resultará de utilidad en el caso que estemos evaluando un polinomio. Supongamos que usted está calculando los máximos y mínimos del polinomio P(x) = x^3 - 2x^2 -x +2 y uno de sus puntos críticos es x_1=\frac{2 + \sqrt{7}}{3}.

Para evalular el polinomio en esta expresión, lo más conveniente es guardarla en la memoria. Si queremos guardarla en el espacio B, seguimos los siguientes pasos

  • Escribimos la operación
    (2 + \sqrt{ \ }7)/3
  • Seguido de STO (presionando previamente SHITF)
  • Seguido de B (sin presionar ALPHA)

Posteriormente, deberá aparecer en la pantalla lo siguiente:

(2 + \sqrt{ \ }7)/3 \rightarrow B

Una vez que hemos almacenado este valor en memoria, podemos usarlo para evalular el polinomio en ese punto crítico, de la siguiente forma.

B^3 – 2B^2 -B +2