Ejercicios

# Ejercicios Propuestos – Derivadas de Orden Superior

1. $f(x)=(5x+4)^2$,
Calcule $f^{(4)}(x)$.
2. $f(x)=(2x-2)^{23}$,
Calcule $f'''(x)$.
3. $f(x)=(-9x+3)^{234}$,
Calcule $f''(x)$.
4. $f(x)=(-3x-4)^{2345}$,
Calcule $f''(x)$.

1. $f(x)=(5x+10x^8)^{3}$,
Calcule $f^{(5)}(x)$.
2. $f(x)=(6x^3+9x^8)^{5}$,
Calcule $f'''(x)$.
3. $f(x)=(7x^5-8x^4)^{7}$,
Calcule $f'''(x)$.
4. $f(x)=(8x^7-7x^2)^{9}$,
Calcule $f''(x)$.

1. $f(x)=\ln(3x+7)+11x^{9}$,
Calcule $f''(x)$.
2. $f(x)=\ln(-4x+55)-12x^{5}$,
Calcule $f'''(x)$.
3. $f(x)=-\ln(7x-7)+13x^{7}$,
Calcule $f^{(4)}(x)$.
4. $f(x)=-\ln(-8x+6)-14x^{6}$,
Calcule $f''(x)$.

1. $f(x)= \sqrt{x^2 - 2x^{-6} + 2}$,
Calcule $f''(x)$.
2. $f(x)= \sqrt[3]{x^5 - x^{-4} + 1}$,
Calcule $f''(x)$.
3. $f(x)= \sqrt[4]{x^8 - 4x^{-7} + 5}$,
Calcule $f''(x)$.
4. $f(x)= \sqrt[5]{x^{11} + x^{-9} - 10}$,
Calcule $f''(x)$.
1. $f(x)= 7x^{4} + 10\textit{\Large e}^{2x+5}$,
Calcule $f^{(6)}(x)$.
2. $f(x)= -6x^{3} + 2\textit{\Large e}^{-5x+10}$,
Calcule $f^{(4)}(x)$.
3. $f(x)= 10x^{8} - 6\textit{\Large e}^{x^{2}-5}$,
Calcule $f'''(x)$.
4. $f(x)= -8x^{10} + 4\textit{\Large e}^{5x^{2}+7}$,
Calcule $f''(x)$.