Ejercicios

Ejercicios Propuestos – Cálculo de Área Bajo una curva

Ejercicios Propuestos

Proceda paso a paso, explicando detalladamente cada paso con sus propias palabras.

Calcule el área bajo la curva f (encerrada entre la curva que define la función y el Eje X) en el intervalo indicado. Dibuje además, el área que está calculando en el plano cartesiano.

  1. f(x) = -3; en el intervalo [1,3]
  2. f(x) = 6; en el intervalo [-2,1]
  3. f(x) = -5; en el intervalo [0,4]
  4. f(x) = 10; en el intervalo [-3,0]

  1. f(x) = x+5; en el intervalo [2,7]
  2. f(x) = -x-4; en el intervalo [4,5]
  3. f(x) = x+2; en el intervalo [2,6]
  4. f(x) = -x+2; en el intervalo [1,8]

  1. f(x) = -(x+5)^2-2; en el intervalo [-5,2]
  2. f(x) = -(x-6)^2+3; en el intervalo [2,3]
  3. f(x) = (-x+5)^2-6; en el intervalo [-4,5]
  4. f(x) = (-x-5)^2+1; en el intervalo [1,3]

  1. f(x) = \sqrt{-x-5}+4; en el intervalo [-6,-5]
  2. f(x) = \sqrt{-x+4}-3; en el intervalo [1,3]
  3. f(x) = -\sqrt{x-3}+10; en el intervalo [3,6]
  4. f(x) = -\sqrt{x+1}-4; en el intervalo [-1,5]

  1. f(x) = (-x+4)^3+6; en el intervalo [1,2]
  2. f(x) = -(x-2)^3+1; en el intervalo [1,3]
  3. f(x) = (-x-7)^3-6; en el intervalo [0,1]
  4. f(x) = -(x+5)^3-4; en el intervalo [-1,0]

  1. f(x) = -\dfrac{1}{x-2}-6; en el intervalo [3,5]
  2. f(x) = \dfrac{1}{-x-2}+2; en el intervalo [2,3]
  3. f(x) = -\dfrac{1}{x+6}-4; en el intervalo [-2,0]
  4. f(x) = \dfrac{1}{-x+5}+3; en el intervalo [0,4]

  1. f(x) = -\ln{(x-2)}+3; en el intervalo [3,6]
  2. f(x) = -\ln{(-x+4)}+4; en el intervalo [-1,2]
  3. f(x) = \ln{(x+3)}-1; en el intervalo [-2,2]
  4. f(x) = \ln{(-x-7)}+2; en el intervalo [-11,-8]

  1. f(x) = {\rm e}^{-x-3}+8; en el intervalo [3,4]
  2. f(x) = -{\rm e}^{x-5}+7; en el intervalo [1,3]
  3. f(x) = {\rm e}^{-x-7}-1; en el intervalo [-2,1]
  4. f(x) = -{\rm e}^{x-2}-1; en el intervalo [0,1]

1 Comment

¿Tienes alguna duda? Compártela en los comentarios.