Comportamiento de una sucesión

Las sucesiones pierden sentido si no se comparan sus elementos entre sí, pues su importancia radica en el comportamiento que estas describen a medida que crece el número natural con el que es correspondido cada elemento. Veamos entonces cuales son los principales comportamientos que podemos encontrar al estudiar sucesiones.

Sucesión Creciente

Diremos que una sucesión a_n es creciente si a medida que crece el valor de n, entonces crece su valor correspondiente. Formalmente, si a_i \leq a_j para todo par de números naturales i < j, y más aún, diremos que a_n es estrictamente creciente si a_i < a_j para todo par de números naturales i < j. Una forma de ver el comportamiento de una sucesión es observando su gráfica en el plano cartesiano, veamos algunos ejemplos de este tipo de sucesiones:

Ejemplos

Ejemplo 1

Si consideramos la sucesión \{ 1, 2, 3, 4, 5, 6, \ldots \} , esta sucesión es creciente, más aún, es estrictamente creciente.

Ejemplo 2

Si consideramos la sucesión \left\{ 0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \ldots \right\}, esta sucesión es creciente, más aún, es estrictamente creciente.

Ejemplo 3

Si consideramos la sucesión \{ -2, -2, -2, -2, -2, -2, \ldots \} , esta sucesión es creciente, sin embargo, no es estrictamente creciente.

Sucesión Decreciente

Diremos que una sucesión a_n es \textbf{decreciente} si a medida que crece el valor de n, entonces decrece su valor correspondiente. Formalmente, si a_i \leq a_j para todo par de números naturales i > j, y más aún, diremos que a_n es estrictamente creciente si a_i < a_j para todo par de números naturales i > j. Una forma de ver el comportamiento de una sucesión es observando su gráfica en el plano cartesiano, veamos algunos ejemplos de este tipo de sucesiones:

Ejemplos

Ejemplo 4

Si consideramos la sucesión \{ -1, -2, -3, -4, -5, -6, \ldots \} , esta sucesión es decreciente, más aún, es estrictamente decreciente.

Ejemplo 5

Si consideramos la sucesión \left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \ldots \right\} , esta sucesión es decreciente, más aún, es estrictamente decreciente.

Ejemplo 6

Si consideramos la sucesión \{ 1, 1, 1, 1, 1, 1, \ldots \} , esta sucesión es creciente, sin embargo, no es estrictamente creciente.


Hay sucesiones que no son ni crecientes ni decrecientes, esto es lo que ocurre con los sucesiones alternantes, consideremos la sucesión \{ 1, -1, 1, -1, 1, -1, \ldots \} y veamos su comportamiento de forma gráfica:


Sucesiones

Definimos una sucesión como una regla de correspondencia que corresponde a cada número natural con un único número real, es decir, una sucesión es una función que parte de desde \mathbb{N} y llega hasta \mathbb{R}, entonces, si a es una sucesión, tenemos que:

Al trabajar con sucesiones, la notación de función puede sobrecargar la nomenclatura, es por esto que la regla de correspondencia a(n) para cada n \in \mathbb{N} que define la sucesión usualmente se denota de la siguiente forma

De esta forma, podemos expresar a las sucesiones como conjuntos, ya sea de forma comprensiva, definiendo la regla general que define a todos los elementos del conjunto o de forma extensiva, nombrando todos sus elementos como veremos a continuación:

Aunque también se puede expresar de forma comprensiva usando las notaciones \{ a_{n} \}_{n \in \mathbb{N}} o (a_{n}).

Veamos en los siguientes ejemplos algunas de las sucesiones básicas. Como ejercicio mental para el lector, vea primero el conjunto que define la sucesión y piense cual es la regla general que la define.

Ejemplos

Ejemplo 1

Si consideramos la sucesión \{ 1,1, 1, 1, 1, 1, \ldots \}, esta sucesión será llamada sucesión constante uno y la regla general que define a esta sucesión es a_{n} = 1. De forma general, la sucesión \{ c, c, c, c, c, c, \ldots \} definida por a_{n} = c donde c es un número real, será llamada sucesión constante c.

Ejemplo 2

Si consideramos la sucesión \{ 1, 2, 3, 4, 5, 6, \ldots \} , esta sucesión será llamada sucesión de los números naturales y la regla general que define a esta sucesión es a_{n} = n.

Ejemplo 3

Si consideramos la sucesión \left\{ 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \ldots \right\}, esta sucesión será llamada sucesión de proporcionalidad inversa y la regla general que define a esta sucesión es a_{n} = \frac{1}{n}.

Ejemplo 4

Si consideramos la sucesión \left\{ 0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \ldots \right\}, la regla general que define a esta sucesión es a_{n} =1- \frac{1}{n}.

Ejemplo 5

Si consideramos la sucesión \{ 2, 4, 6, 8, 10, 12, \ldots \} , esta sucesión será llamada sucesión de los números pares y la regla general que define a esta sucesión es a_{n} = 2n, notemos que se genera multiplicando cada número natural por dos.

Ejemplo 6

Si consideramos la sucesión \{ 1, 3, 5, 7, 9, 11, \ldots \} , esta sucesión será llamada sucesión de los números impares y la regla general que define a esta sucesión es a_{n} = 2n-1, notemos que se genera restando uno a cada número par.

Ejemplo 7

Si consideramos la sucesión \{ -1, 1, -1, 1, -1, 1, \ldots \} , esta sucesión será llamada sucesión alternante y la regla general que define a esta sucesión es a_{n} = (-1)^{n}.


Sistemas de Ecuaciones Lineales – Cramer

Diremos que un sistema de ecuaciones lineales (ó sistema de ecuaciones lineales simultáneas) es un conjunto de ecuaciones con incógnitas comunes. Formalmente, sean x_1, x_2, \ldots, x_n un conjunto de n incógnitas, definimos un sistema de ecuaciones lineales con n incógnitas y m ecuaciones, de la siguiente forma:

Una vez que hemos planteado un sistema de ecuaciones lineales con n ecuaciones y n incógnitas de forma matricial, es decir, de la siguiente forma:

Podemos definir varios elementos que nos permitan calcular la solución del sistema de ecuaciones usando determinantes de matrices, así que empezaremos definiendo

\Delta = |A|

Si \Delta \neq 0, podemos garantizar que existe una única solución para el sistema de ecuaciones, por lo tanto

Definimos \Delta_{x_1} como el determinante de la matriz que resulta al sustituir la primera columna por la matriz C, es decir,

Definimos \Delta_{x_2} como el determinante de la matriz que resulta al sustituir la segunda columna por la matriz C, es decir,

Continuando así, definimos \Delta_{x_j} como el determinante de la matriz que resulta al sustituir la \emph{j-ésima} columna por la matriz C, es decir,

Finalmente, definimos \Delta_{x_n} como el determinante de la matriz que resulta al sustituir la \emph{n-ésima} columna por la matriz C, es decir,

Una vez que hemos definido esta serie de elementos, podemos definir los valores que dan solución al sistema de ecuaciones planteando los siguientes cocientes:

x_1 = \frac{\Delta_{x_1}}{\Delta}, \ x_2 = \frac{\Delta_{x_2}}{\Delta}, \ \ldots , \ x_n = \frac{\Delta_{x_n}}{\Delta}.

Este método es conocido como el Método de Cramer, veamos entonces con algunos ejemplos como calcular la solución de sistemas de ecuaciones lineales usando este método.

Ejemplos

Ejemplo 1

Calcule la solución del siguiente sistema de ecuaciones lineales,

Este sistema de ecuaciones lineales se puede expresar de forma matricial, de la siguiente manera:

Una vez que hemos expresado el sistema de forma matricial, calculamos los elementos \Delta que nos permitirán calcular las soluciones.

Finalmente, la solución del sistema de ecuaciones lineales está definida de la siguiente forma:

x=\frac{\Delta_{ x }}{\Delta} = \frac{15}{16}, \ y=\frac{\Delta_{ y }}{\Delta} = \frac{71}{32}

Ejemplo 2

Calcule la solución del siguiente sistema de ecuaciones lineales,

Este sistema de ecuaciones lineales se puede expresar de forma matricial, de la siguiente manera:

Una vez que hemos expresado el sistema de forma matricial, calculamos los elementos \Delta que nos permitirán calcular las soluciones.

Finalmente, la solución del sistema de ecuaciones lineales está definida de la siguiente forma:

x=\frac{\Delta_{ x }}{\Delta} = \frac{400}{133}, \ y=\frac{\Delta_{ y }}{\Delta} = \frac{270}{133}, \ z=\frac{\Delta_{ z }}{\Delta} = \frac{41}{133}

Ejemplo 3

Calcule la solución del siguiente sistema de ecuaciones lineales,

Este sistema de ecuaciones lineales se puede expresar de forma matricial, de la siguiente manera:

Una vez que hemos expresado el sistema de forma matricial, calculamos los elementos \Delta que nos permitirán calcular las soluciones.

Finalmente, la solución del sistema de ecuaciones lineales está definida de la siguiente forma:

x=\frac{\Delta_{ x }}{\Delta} = \frac{-355}{257}, \ y=\frac{\Delta_{ y }}{\Delta} = \frac{-145}{257}, \ z=\frac{\Delta_{ z }}{\Delta} = \frac{133}{257}

Ejemplo 4

Calcule la solución del siguiente sistema de ecuaciones lineales,

Este sistema de ecuaciones lineales se puede expresar de forma matricial, de la siguiente manera:

Una vez que hemos expresado el sistema de forma matricial, calculamos los elementos \Delta que nos permitirán calcular las soluciones.

Finalmente, la solución del sistema de ecuaciones lineales está definida de la siguiente forma:

x = \frac{\Delta_{ x }}{\Delta} = \frac{-109}{235}, \ y = \frac{\Delta_{ y }}{\Delta} = \frac{213}{235}, \ z = \frac{\Delta_{ z }}{\Delta} = \frac{34}{47}, \ w = \frac{\Delta_{ w }}{\Delta} = \frac{354}{235}


Sistemas de Ecuaciones Lineales

Al definir una ecuación, de forma básica, se establece la relación entre un número desconocido y números conocidos a partir de una igualdad, también hemos visto que es posible establecer relaciones entre más números desconocidos tal como cuando se define una recta de la forma ax + by + c = 0 y calcular el punto de intersección entre dos rectas, se determinan los valores de x y y que satisfacen ambas ecuaciones; generalizando así, nuestra definición de ecuación.

Diremos que un sistema de ecuaciones lineales (ó sistema de ecuaciones lineales simultáneas) es un conjunto de ecuaciones con incógnitas comunes. Formalmente, sean x_1, x_2, \ldots, x_n un conjunto de n incógnitas, definimos un sistema de ecuaciones lineales con n incógnitas y m ecuaciones, de la siguiente forma:

La solución de este sistema es un conjunto de números reales que satisface todas las ecuaciones al mismo tiempo, y para determinar si un sistema de ecuaciones tiene exactamente una solución, debemos tomar ciertas consideraciones.

Todo sistema de ecuaciones lineales se puede ver como una ecuación donde los elementos involucrados son matrices pues las expresiones que están del lado izquierdo de la igualdad se pueden escribir como un producto de matrices y los elementos que están del lado derecho se pueden escribir como una matriz de una sola columna, de la siguiente manera:

Identificando las matrices A, X y C; podemos asegurar que el sistema de ecuaciones tendrá exactamente una solución si la matriz A es una matriz cuadrada y si esta es una matriz \emph{no-singular}, es decir, si |A| \neq 0. Existen diversos métodos para calcular esta única solución de un sistema de ecuaciones.


Cálculo de Matriz Inversa – Cramer

Una vez que hemos definido la matriz inversa, lo natural es determinar una forma de calcular la matriz inversa, pues no siempre contaremos con ella. Existen diversos métodos para calcular la matriz inversa de una matriz no-singular A, por ahora veremos solo uno de ellos.

A continuación veremos un método que nos permite calcular la inversa de una matriz usando el cálculo de determinantes y la transposición de matrices, a partir de este método se deriva una técnica para calcular la solución sistemas de ecuaciones lineales conocida como la Regla de Cramer.

Consideraremos cinco pasos que nos permitirán calcular la matriz inversa de una matriz A:

Paso I: Verificamos que la matriz A sea no-singular. Es decir, verificamos que

|A| \neq 0

Paso II: Calculamos todos los cofactores de la matriz A y con ellos, construimos la matriz de cofactores C(A). Es decir, una matriz tal que,

[C(A)]_{ij} = c(a_{ij})

Paso III: Transponemos la matriz de cofactores. A esta nueva matriz la llamamos Matriz Adjunta de A, la denotamos por

adj(A)

Pso IV: Definimos la inversa de la matriz A como la matriz adjunta, dividida entre el determinante de A. Es decir,

A^{-1} = \frac{adj(A)}{|a|}

Paso V: Verificamos que nuestros cálculos son correctos multiplicando

A \times A^{-1} \text{ y } A^{-1} \times A

Veamos con algunos ejemplos como calcular la inversa de matrices de tamaño tres, pues de esta forma podemos seguir los cálculos con facilidad.

Ejemplos

Ejemplo 1

Calcule la inversa de la matriz A.

Paso I: Verificamos que la matriz A sea no-singular. Es decir, verificamos que |A| \neq 0.

Paso II: Calculamos la matriz de cofactores de A, es decir, C(A).

Paso III: Calculamos la matriz adjunta de A, es decir, adj(A).

Paso IV: Calculamos la matriz inversa de A, es decir, A^{-1}.

Paso V: Queda de parte del lector verificar que A \times A^{-1} = A^{-1} \times A = \mathbf{I}_3.

Ejemplo 2

Calcule la inversa de la matriz A.

Paso I: Verificamos que la matriz A sea no-singular. Es decir, verificamos que |A| \neq 0.

Paso II: Calculamos la matriz de cofactores de A, es decir, C(A).

Paso III: Calculamos la matriz adjunta de A, es decir, adj(A).

Paso IV: Calculamos la matriz inversa de A, es decir, A^{-1}.

Paso V: Queda de parte del lector verificar que A \times A^{-1} = A^{-1} \times A = \mathbf{I}_3.

Ejemplo 3

Calcule la inversa de la matriz A.

Paso I: Verificamos que la matriz A sea no-singular. Es decir, verificamos que |A| \neq 0.

Paso II: Calculamos la matriz de cofactores de A, es decir, C(A).

Paso III: Calculamos la matriz adjunta de A, es decir, adj(A).

Paso IV: Calculamos la matriz inversa de A, es decir, A^{-1}.

Paso V: Queda de parte del lector verificar que A \times A^{-1} = A^{-1} \times A = \mathbf{I}_3.

Ejemplo 4

Calcule la inversa de la matriz A.

Paso I: Verificamos que la matriz A sea no-singular. Es decir, verificamos que |A| \neq 0.

Paso II: Calculamos la matriz de cofactores de A, es decir, C(A).

Paso III: Calculamos la matriz adjunta de A, es decir, adj(A).

Paso IV: Calculamos la matriz inversa de A, es decir, A^{-1}.

Paso V: Queda de parte del lector verificar que A \times A^{-1} = A^{-1} \times A = \mathbf{I}_3.