Composición de Funciones y Dominio de Funciones Compuestas

Composición de Funciones

Existen funciones que no se pueden expresar como operaciones básicas de funciones elementales. Consideremos g : A \longrightarrow B y f: C \longrightarrow D dos funciones, definimos la composición de g con f como una nueva función que corresponde a cada imagen de un elemento a \in A un único elemento c \in C, la denotamos como f \circ g : A \longrightarrow D y la definimos de la siguiente forma:

\Big(f \circ g \Big) (x) = f \Big( g(x) \Big)

Veamos con algunos ejemplos como calcular la composición de funciones.

Anuncios

Ejemplos

Ejemplo 1

Sean f(x)=x^2-2 y g(x)=x+1, calcule \Big(f \circ g \Big) (x).

\Big(f \circ g \Big) (x)  =  f \Big( g(x) \Big)  =  \big( g(x) \big)^2-2  =  (x+1)^2-2

Ejemplo 2

Sean f(x)=\dfrac{3}{x+2} y g(x)=\ln(x-1), calcule \Big(f \circ g \Big) (x).

\Big(f \circ g \Big) (x) = f \Big( g(x) \Big) = \dfrac{3}{g(x)+2} = \dfrac{3}{\ln(x-1)+2}

Ejemplo 3

Sean f(x)={\rm e}^{2x+5} y g(x)=\sqrt{1-x}, calcule \Big(g \circ f \Big) (x).

\Big(g \circ f \Big) (x) = g \Big( f(x) \Big) = \sqrt{1 - f(x)} = \sqrt{1 - {\rm e}^{2x+5}}


Básicamente al componer la función g con la función f, estamos sustituyendo el argumento de la función f con la función g.

Anuncios

Dominio de una Función compuesta

El dominio de este tipo de funciones viene dado por todos los elementos que están en el dominio de g : A \longrightarrow B cuyas imágenes están en el dominio de f: C \longrightarrow D, es decir,

Dom(f \circ g ) = \{ x \in Dom(g) : g(x) \in Dom(f) \}

Consideremos un Diagrama Sagital para ilustrar la composición de funciones.

En este Diagrama Sagital, el dominio de la función (f \circ g ) será el conjunto formado por a_1 y a_2. Notemos que si el rango de la función g está enteramente contenido en el dominio de la función f, entonces

Dom\Big(f \circ g \Big) = dom(f)

Determinar el dominio de una función compuesta (f \circ g ) no es tan simple como intersectar o unir conjuntos, hay que tomar en cuenta la naturaleza de ambas funciones con detenimiento y calcular los valores de x para los cuales g(x) satisface las condiciones impuestas por el dominio de f. Veamos con algunos ejemplos cual es la técnica para hacer esto.

Anuncios

Ejemplos

Ejemplo 4

Para calcular el dominio de la función f(x) = \ln(x^2-1), debemos notar que esta función es el resultado de la función x^2-1 compuesta con la función logaritmo neperiano y sabiendo que el dominio de ésta viene dado por todos los números reales mayores que cero, debemos determinar cuales son los valores de x para los cuales

x^2-1 > 0 \Rightarrow (x-1)(x+1) > 0

Por lo tanto, debemos calcular la solución de esta inecuación cuadrática para determinar la solución.

x-1 > 0 y x+1 > 0
ó
x-1 < 0 y x+1 < 0

x > 1 y x > -1 (1)
ó
x < 1 y x < -1 (2)

Solución (1):
(1,+\infty) \cap (-1,+\infty) = (1,+\infty)

Solución (2):
(-\infty,1) \cap (-\infty,-1) = (-\infty,-1)

Por lo tanto, la solución general es (1,+\infty) \cup (-\infty,-1) que a su vez, es el dominio de la función f(x) = \ln(x^2-1).

Ejemplo 5

Para calcular el dominio de la función f(x) = \text{\large \rm e}^{\sqrt{x+1}}, debemos notar que esta función es el resultado de la función \sqrt{x+1} compuesta con la función exponencial y sabiendo que el dominio de la función exponencial es el conjunto de todos los números reales, basta con determinar el dominio de \sqrt{x+1}, es decir, todos los números reales para los cuales x+1 \geq 0.

Por lo tanto, el dominio de la función f(x) = \text{\large \rm e}^{\sqrt{x+1}} es [-1,+\infty).

Ejemplo 6

Para calcular el dominio de la función f(x) = \frac{1}{x^2-9}, debemos notar que esta función es el resultado de la función x^2-9 compuesta con la función de proporcionalidad inversa y sabiendo que el dominio de ésta viene dado por todos los números reales distintos de cero, debemos determinar cuales son los valores de x para los cuales x^2-9 = 0 y los excluimos.

Por lo tanto, el dominio de la función f(x) = \frac{1}{x^2-9} es \mathbb{R} - \{ -3,3\}.


12 comentarios en “Composición de Funciones y Dominio de Funciones Compuestas

  1. Hola. Tengo una duda. Estoy algo frío en desigualdades cuadráticas así que en el ejemplo del dominio de ln(x^2 – 1), de dónde y por qué razón salen el -3 y el 2? Entiendo el resto, el despeje de las desigualdades lineales y sus intersecciones, y ya corroboré con una graficadora que el dominio es el correcto, pero no entiendo de dónde salen en primera instancia esos valores. Gracias de antemano por la respuesta.

    • Saludos, Ricardo. Muchas gracias por su observación, ya hice las correcciones pertinentes. En un principio había planteado otra inecuación cuadrática, pero para no hacer tan complejas las cuentas, cambié el polinomio que está en el argumento que está dentro del logaritmo, pero olvidé en aquel momento cambiar también la resolución de las inecuaciones. Afortunadamente, usted estuvo aquí para señalar esa falta, ¡muchas gracias!

    • Hola, necesito saber si tengo fog, la condición si imagen de g debe estar incluido en dominio de f..muchas gracias

Responder a Graciela Cancelar respuesta