Factorizar Polinomios (2 de 2)

¿Cómo hallar las raíces enteras de un polinomio utilizando el Método de Ruffini?

Consideremos un polinomio de grado n que cuenta con n raíces, entonces éste se puede factorizar de la forma

Factorizar un polinomio a partir de sus raíces.

Así, podemos notar que cuando aplicamos la propiedad distributiva entre todos estos productos, el término independiente del polinomio resultante será igual al producto de todas las raíces. Por ejemplo, si consideramos P(x) = (x+2)(x+3), éste se puede expandir como P(x) = x^2 +5x + 6. Tomando en cuenta este hecho, pudiéramos decir que al considerar un polinomio de la forma

polinomio de grado n

los divisores del término independiente a_0 serán las posibles raíces de éste polinomio.

Sabiendo esto, podemos aplicar el Método de Ruffini para hallar las raíces de un polinomio P(x), simplemente dividiendo por (x-r), donde r es uno de los divisores de su término independiente y verificando si esta división es exacta. Para tener más clara esta idea, consideremos los siguientes ejemplos.

Ejemplo 1

Sea P(x)=x^3+4x^2-x-4, consideremos los divisores del término independiente que este caso son \pm 1, \pm 2, \pm 4. Tomemos el primero de estos divisores que es +1 y apliquemos el Método de Ruffini:

Como el resto de la división es cero, concluimos que 1 es una raíz del polinomio P(x). Pudiera ser que 1 también sea una raíz del último polinomio generado, entonces verificamos si 1 es también raíz de este polinomio:

Como el resto de esta última división es distinto de cero, descartamos que 1 pueda ser raíz del último polinomio generado, por lo tanto borramos lo escrito y continuamos verificando cuales son las raíces. El siguiente número que usaremos será -1

Como el resto de esta última división es cero, concluimos que -1 es una raíz del polinomio P(x). Pudiera ser que -1 también sea una raíz del último polinomio generado, sin embargo, antes de verificar nuevamente si -1 es raíz del nuevo polinomio podemos notar a simple vista que -4 es una raíz, ya que

Por lo tanto, concluimos que las raíces del polinomio P(x) son 1, -1 y 4. Además, podemos factorizar este polinomio de la siguiente forma:

Ejemplo 2

Sea P(x)=x^4 - 9x^2 + 4x - 12, consideramos los divisores del término independiente que este caso son \pm 1, \pm 2, \pm 3, \pm 4, \pm 6 y \pm 12; y aplicamos el Método de Ruffini:

Por lo tanto, concluimos que las raíces del polinomio P(x) son -1, 2, 2 y -3. Notamos que el número dos se repite dos veces, en este caso decimos que es una raíz de multiplicidad igual a dos. Además, podemos factorizarlo de la siguiente forma:

Ejemplo 3

Sea P(x)=3x^4 -48x^3 + 288x^2 - 768x - 768. Notamos que el coeficiente principal de este polinomio es igual a tres, es por esto que lo más conveniente es sacarlo como factor común para obtener P(x)=3(x^4 -16x^3 + 96x^2 - 256x + 256) consideramos los divisores del término independiente que este caso son \pm 1, \pm 2, \pm 4, \pm 8, \pm 16, \pm 32, \pm 64, \pm 128 y \pm 256; y aplicamos el Método de Ruffini:

Por lo tanto, concluimos que las raíces del polinomio P(x) son 4, 4, 4 y 4. Notamos que el número cuatro se repite cuatro veces, en este caso decimos que es una raíz de multiplicidad igual a cuatro. Además, podemos factorizarlo de la siguiente forma:

En estos últimos ejemplos, desarrollamos el Método de Ruffini sobre las raíces directamente, pero hay que tomar en cuenta que se deben considerar todas las posibles raíces verificando con cada una que el resto sea igual a cero, preferiblemente en el orden en que éstas se presentan.

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s