Números Reales

¿Qué es la raíz cuadrada de 2?

Empecemos considerando un triángulo rectángulo, es decir, un triángulo que tiene un ángulo recto (90°). Decimos que sus catetos son los lados adyacentes a este ángulo y la hipotenusa será el lado opuesto a dicho ángulo. Entonces, si un cateto mide a, el otro cateto mide b y la hipotenusa mide c; podemos dibujar un triángulo rectángulo de la siguiente forma:

Triángulo Rectángulo | totumat.com
Triángulo Rectángulo

También pudiera interesarte

Anuncios

El Teorema de Pitágoras establece que si usted tiene un triángulo rectángulo, el cuadrado de la hipotenusa será igual a la suma de los cuadrados de los catetos, es decir,

c^2 = a^2 + b^2

Con este resultado podemos decir que si tenemos un triángulo rectángulo cuyos catetos miden 3 y 4, entonces 3^2 + 4^2 = 9 + 16 = 25. Si la hipotenusa es c, tendremos que c^2=25. Es decir, la hipotenusa será un número tal que multiplicado por él mismo nos da 25 como resultado, ya que 5^2=5\cdot 5 = 25, concluimos que la hipotenusa de este triángulo mide 5.

De igual forma si tenemos un triángulo rectángulo cuyos catetos miden 5 y 12, la hipotenusa medirá 13. Si los catetos miden 8 y 6, la hipotenusa medirá 10. Notemos que estos casos la medida de la hipotenusa es un número entero, sin embargo, este no es un caso general.

Supongamos que los catetos de un triángulo rectángulo miden 1 cada uno. Tendremos que 1^2 + 1^2 = 1+1=2 . Entonces c^2=2, ¿puede usted pensar en un número racional tal que al multiplicarlo por sí mismo nos dé 2 como resultado? ¿Será 1? ¿Será 2? ¿Qué tal 1,5? La respuesta es que no hay un número racional tal que multiplicado por sí mismo nos dé 2 como resultado.

Anuncios
Anuncios
Anuncios

Esta situación la solucionamos definiendo un nuevo número que no es natural, no es entero y tampoco es racional. Lo denotaremos con \sqrt{2} y diremos que éste satisface la condición c^2=2, es decir, (\sqrt{2})^2=2.

\sqrt{2}

Hay una gran cantidad de situaciones en las que tendremos que definir nuevos números como \sqrt{3}, \sqrt{5}, \sqrt{6}, \sqrt{13}, \sqrt{3453}, \sqrt{\frac{6}{19}}, etc. El símbolo \sqrt{ \ \ } se llama raíz cuadrada, y así como se han presentado estos números, se presentarán otras ocasiones en los que debemos definir nuevos números como por ejemplo \pi, \phi ó \epsilon.

Todos estos números a diferencia de los números racionales tendrán una extensión decimal infinita no periódica, es decir, su extensión decimal nunca se repite. Por ejemplo, con técnicas computarizadas se han logrado calcular hasta la fecha 31 4159 2653 5897 dígitos del número \pi. Estos son los primeros 160 publicados en pi day:

3.1415 9265 3589 7932 3846 2643 3832 7950 2884 1971 6939 9375 1058 2097 4944 5923 0781 6406 2862 0899 862 8034 8253 4211 7067 98214 8086 5132 8230 6647 0938 4460 9550 5822 3172 5359 4081 2848 1117 45…

Anuncios
Anuncios
Anuncios

Definiremos un nuevo conjunto que alberga todos estos números y justamente por su característica de no ser racionales, lo llamaremos el conjunto de los Números Irracionales. Lo denotaremos con el símbolo \mathbb{I}.

Considerando todos los conjuntos que hemos definido anteriormente, como los números naturales, enteros y racionales, definiremos un nuevo conjunto que alberga a todos los números racionales y todos los números irracionales, lo llamaremos el conjunto de los Números Reales y lo denotaremos por \mathbb{R} , formalmente tendremos que

\mathbb{R} = \mathbb{Q} \cup \mathbb{I}

De esta forma nos podemos dar cuenta que el conjunto de los Números Racionales es un subconjunto del conjunto de los Números Reales, más aún, tendremos una cadena de contenciones de la siguiente forma:

\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}

Es importante notar que a medida que definimos nuevos conjuntos, llenamos los «huecos» que hay entre los elementos de los conjuntos. Se asemeja a una historia de un autor anónimo que frecuentemente se encuentra en internet:

Anónimo…

Un profesor de filosofía llegó al salón de clases con su termo de café caliente como de costumbre, pero esta vez traía consigo una gran jarra y varios objetos. Sin mediar palabra el profesor llenó la jarra con pelotas de golf y preguntó a sus alumnos si la jarra estaba llena. Ellos asintieron con confusión por la obviedad de la pregunta.

Entonces el profesor tomó una caja de canicas y las vertió también dentro de la jarra; agitó con cuidado la jarra. Las canicas rodaron en las áreas abiertas que había entre las pelotas de golf. De nuevo les preguntó a sus estudiantes si la jarra estaba llena. Por segunda vez, todos estuvieron de acuerdo.

Después, el profesor tomó una caja de arena y la vertió en la jarra. Como ya podrán imaginarse, la arena se deslizó por todos los huecos que aún quedaban. El les preguntó una vez más si la jarra estaba llena. Los estudiantes respondieron al unísono «¡SÍII!».

Con mucha tranquilidad el profesor tomó su termo de café y lo vertió completamente en la jarra llenando efectivamente el espacio entre la arena. Los estudiantes rieron.

La historia generalmente viene acompañada con algunas frases de autoayuda o reflexiones sobre la vida pero eso no nos interesa, lo importante es notar que al representar el conjunto de los números reales de forma gráfica obtendremos una pasta cohesionada de números sin espacios entre ellos, que representaremos con una recta centrada en el cero de la siguiente forma:

La Recta Real | totumat.com

A esta recta la llamaremos Recta Real y en ella representaremos todos los números que hemos conocido hasta ahora.


– ¡Amor! 2 ha llegado de la guerra pero se ha vuelto irracional.
– ¡¿Qué?! ¡No 2! Él siempre ha sido… ¡Oh, dios!
– ¡Se ha radicalizado!


Conjuntos Numéricos: Naturales, Enteros, Racionales y Reales | totumat.com

5 comentarios en “Números Reales

¿Tienes alguna duda? Compártela en los comentarios.

Este sitio utiliza Akismet para reducir el spam. Conoce cómo se procesan los datos de tus comentarios.